講演会
過去の記録 ~09/18|次回の予定|今後の予定 09/19~
2010年04月28日(水)
16:00-17:30 数理科学研究科棟(駒場) 056号室
3回連続の第1回です。2回目と3回目は、5月7日(金)4時から5時半と
5月12日(水)3時半から5時です。部屋はどちらも056です。
Luc Illusie 氏 (東京大学/Paris南大学)
Independence of families of $\\ell$-adic representations and uniform constructibility
3回連続の第1回です。2回目と3回目は、5月7日(金)4時から5時半と
5月12日(水)3時半から5時です。部屋はどちらも056です。
Luc Illusie 氏 (東京大学/Paris南大学)
Independence of families of $\\ell$-adic representations and uniform constructibility
[ 講演概要 ]
Let $k$ be a number field, $\\overline{k}$ an algebraic closure of $k$, $\\Gamma_k = \\mathrm{Gal}(\\overline{k}/k)$. A family of continuous homomorphisms $\\rho_{\\ell} : \\Gamma_k \\rightarrow G_{\\ell}$, indexed by prime numbers $\\ell$, where $G_{\\ell}$ is a locally compact $\\ell$-adic Lie group, is said to be independent if $\\rho(\\Gamma_k) = \\prod \\rho_{\\ell}(\\Gamma_k)$, where $\\rho = (\\rho_{\\ell}) : \\Gamma_k \\rightarrow \\prod G_{\\ell}$. Serre gave a criterion for such a family to become independent after a finite extension of $k$. We will explain Serre's criterion and show that it applies to families coming from the $\\ell$-adic cohomology (or cohomology with compact support) of schemes separated and of finite type over $k$. This application uses a variant of Deligne's generic constructibility theorem with uniformity in $\\ell$.
Let $k$ be a number field, $\\overline{k}$ an algebraic closure of $k$, $\\Gamma_k = \\mathrm{Gal}(\\overline{k}/k)$. A family of continuous homomorphisms $\\rho_{\\ell} : \\Gamma_k \\rightarrow G_{\\ell}$, indexed by prime numbers $\\ell$, where $G_{\\ell}$ is a locally compact $\\ell$-adic Lie group, is said to be independent if $\\rho(\\Gamma_k) = \\prod \\rho_{\\ell}(\\Gamma_k)$, where $\\rho = (\\rho_{\\ell}) : \\Gamma_k \\rightarrow \\prod G_{\\ell}$. Serre gave a criterion for such a family to become independent after a finite extension of $k$. We will explain Serre's criterion and show that it applies to families coming from the $\\ell$-adic cohomology (or cohomology with compact support) of schemes separated and of finite type over $k$. This application uses a variant of Deligne's generic constructibility theorem with uniformity in $\\ell$.