Kavli IPMU Komaba Seminar
過去の記録 ~10/15|次回の予定|今後の予定 10/16~
開催情報 | 月曜日 16:30~18:00 数理科学研究科棟(駒場) 002号室 |
---|---|
担当者 | 河野 俊丈 |
2008年06月02日(月)
17:00-18:30 数理科学研究科棟(駒場) 002号室
Shinobu Hikami 氏 (The University of Tokyo)
Intersection theory from duality and replica
Shinobu Hikami 氏 (The University of Tokyo)
Intersection theory from duality and replica
[ 講演概要 ]
Kontsevich's work on Airy matrix integrals has led to explicit results for the
intersection numbers of the moduli space of curves. In this article we show that a duality between k-point functions on N by N matrices and N-point functions of k by k matrices, plus the replica method, familiar in the theory of disordered systems, allows one to recover Kontsevich's results on the intersection numbers, and to generalize them to other models. This provides an alternative and simple way to compute intersection numbers with one marked point, and leads also to some new results. This is a joint work with E. Brezin (Comm.Math. Phys. in press, arXiv:0708.2210).
Kontsevich's work on Airy matrix integrals has led to explicit results for the
intersection numbers of the moduli space of curves. In this article we show that a duality between k-point functions on N by N matrices and N-point functions of k by k matrices, plus the replica method, familiar in the theory of disordered systems, allows one to recover Kontsevich's results on the intersection numbers, and to generalize them to other models. This provides an alternative and simple way to compute intersection numbers with one marked point, and leads also to some new results. This is a joint work with E. Brezin (Comm.Math. Phys. in press, arXiv:0708.2210).