Lie Groups and Representation Theory

Seminar information archive ~03/20Next seminarFuture seminars 03/21~

Date, time & place Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.)

Seminar information archive

2006/10/31

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
大島利雄氏 (東大数理)
ルート系の部分系の分類
[ Abstract ]
ルート系 Ξ からルート系 Σ へのCartan整数を保つ写像の分類を考える(像は Σ の部分系と見なせる).
Σ のWeyl群(Σ の内部同型)で移りあうものを同値とみたときの分類をまず行い,
同値の条件をさらに Ξ の自己同型(部分系の分類に対応),Ξ の既約成分の自己同型の直積,
Σ の自己同型などを許すものに広げた場合の分類や像が放物型かどうかの判定も与える.
ルート系の dual pair の概念を定義し,同値類への Ξ の自己同型の作用の考察に用いる.
[ Reference URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2006/07/31

15:00-17:30   Room #126 (Graduate School of Math. Sci. Bldg.)
Guster Olafsson (Louisiana State University) 15:00-16:00
The Heat equation, the Segal-Bargmann transform and generalizations - II
[ Reference URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html
Boris Rubin (Louisiana State University) 16:30-17:30
Radon transforms on Grassmannians and Matrix Spaces
[ Abstract ]
Diverse geometric problems in $R^N$ get a new flavor if a generic point $x=(x_1,...,x_N)$ is regarded as a matrix with appropriately organized entries (set, e.g., $x=(x_{i,j})_{n \\times m}$ for $N=nm$). This well known observation has led to a series of breakthrough achievements in mathematics. In integral geometry it suggests a number of the so-called ``higher-rank" problems when such traditional scalar notions as ``distance", ``angle", and ``scaling" become matrix-valued. I will be speaking about Radon transforms on Grassmann manifolds and matrix spaces and some related problems of harmonic analysis where these phenomena come into play.
[ Reference URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2006/07/25

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
Boris Rubin (Louisiana State University)
Radon Transforms: Basic Concepts
[ Abstract ]
How can we reconstruct a function on a manifold from integrals of this function over certain submanifolds?
This is one of the central problems in integral geometry and tomography, which leads to the notion of the Radon transform.

The first talk is of introductory character.
We discuss basic ideas of the original Radon's paper (1917), then proceed to the Minkowski-Funk transform and more general totally geodesic Radon transforms on the $n$-dimensional unit sphere.
The main emphasis is an intimate connection of these transforms with the relevant harmonic analysis.
We will see that Radon transforms of this type and their inverses can be regarded as members of analytic families of suitable convolution operators and successfully studied in the framework of these families.

I also plan to discuss an open problem of small divisors on the unit sphere, which arises in studying injectivity of generalized Minkowski-Funk transforms for non-central spherical sections.
[ Reference URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2006/07/20

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
Guster Olafsson (Louisiana State University)
The Heat equation, the Segal-Bargmann transform and generalizations - I
[ Reference URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2006/07/11

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
縫田 光司 (産業技術総合研究所)
On the isomorphism problem of Coxeter groups and related topics
[ Abstract ]
コクセター群について、そのコクセター系としての同型類がコクセターグラフと一対一対応することは周知の事実であるが、一方で抽象群としての同型類は(ワイル群の場合に限っても)そのような対応をしていない。今回は、この同型類の決定問題について、その歴史のあらまし(特に、無限群も含めた一般の場合について、10年ほど前まで殆ど何の結果も得られていなかったことは特筆に価する)と、近年の研究の進展状況を、具体例や関連する結果を交えつつ紹介する。
[ Reference URL ]
http://akagi.ms.u-tokyo.ac.jp/seminar.html

2006/06/13

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
織田 寛 (拓殖大学工学部)
古典型複素Lie環の一般Verma加群に対する最小多項式
[ Abstract ]
古典型複素Lie環 g の自然表現から自然に定まる U(g) 係数の正方行列を F とする.g のスカラー一般Verma加群 $M_Θ(λ)$ に対して,複素モニック多項式 q(x) で q(F) の各成分が全て Ann $M_Θ(λ)$ に属するような最小次数のものを “$M_Θ(λ)$ の最小多項式” とよぶ.M(λ) を $M_Θ(λ)$ を商加群とするVerma加群とし,q(F) の各成分と Ann M(λ) が生成する U(g) の両側イデアルを $I_Θ(λ)$ とすると,最近

(1) 各λに対する $M_Θ(λ)$ の最小多項式の明示公式
(2) $M_Θ(λ)= M(λ)/I_Θ(λ)M(λ)$ が成り立つためのλの 必要十分条件

が得られた(これらは大島により g = gln の場合には既に得られている).セミナーでは(2)を示すための q(F) の各成分の Harish-Chandra 準同型像の計算法を主に説明する.

2006/05/16

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
大島 利雄 (東京大学大学院数理科学研究科)
確定特異点型の可換な微分作用素系について
[ Abstract ]
実簡約Lie群やその対称空間をコンパクト多様体に実現すると,不変微分作用素系はその境界に沿って確定特異点を持つ可換微分作用素系となる.
可換微分作用素系がただ一つの作用素から特徴づけられることを基に,境界の近傍で多価解析的な同時固有関数の一般的構成を考察し,表現論,特にWhittaker模型などへの応用を論じる(Harish-Chandra同型やGoodman-Wallach作用素の微分方程式論の立場からの解釈などを含む).

2006/04/18

16:30-18:00   Room #126 (Graduate School of Math. Sci. Bldg.)
伴 克馬 (東京大学大学院数理科学研究科)
Rankin-Cohen-伊吹山型の微分作用素について
[ Abstract ]
正則保型形式の正則微分は一般に保型形式ではなくなるが、それらを組み合わせることで新たな正則保型形式を与えることもできる。
楕円モジュラー形式に対するRankin-Cohen微分作用素はその最も簡単な例である。伊吹山はSiegelモジュラー形式に対するこのようなタイプの微分作用素がどのような形をしているかについて、一般的な記述を与えた。
今回のセミナーでは、伊吹山による結果を表現論的な命題として捉え直し、その命題が自然にSU(p,q)やO*(2p)上の正則保型形式にも拡張されることを説明する。

< Previous 12345678