Lie Groups and Representation Theory
Seminar information archive ~06/12|Next seminar|Future seminars 06/13~
Date, time & place | Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|
Seminar information archive
2013/02/04
17:30-19:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Nizar Demni (Université de Rennes 1)
Dunkl processes assciated with dihedral systems, I (ENGLISH)
Nizar Demni (Université de Rennes 1)
Dunkl processes assciated with dihedral systems, I (ENGLISH)
[ Abstract ]
I'll first give a brief and needed account on root systems and finite reflection groups. Then, I'll introduce Dunkl operators and give some properties. Once I'll do, I'll introduce Dunkl processes and their continuous components, so-called radial Dunkl processes. The latter generalize eigenvalues processes of some matrix-valued processes and reduces to reflected Brownian motion in Weyl chambers. Besides, Brownian motion in Weyl chambers corresponds to all multiplicity values equal one are constructed from a Brownian motion killed when it first hits the boundary of the Weyl chamber using the unique positive harmonic function (up to a constant) on the Weyl chamber. In the analytic side, determinantal formulas appear and are related to harmonic analysis on the Gelfand pair (Gl(n,C), U(n)). This is in agreement on the one side with the so-called reflection principle in stochastic processes theory and matches on the other side the so-called shift principle introduced by E. Opdam. Finally, I'll discuss the spectacular result of Biane-Bougerol-O'connell yielding to a Duistermaat-Heckman distribution for non crystallographic systems.
I'll first give a brief and needed account on root systems and finite reflection groups. Then, I'll introduce Dunkl operators and give some properties. Once I'll do, I'll introduce Dunkl processes and their continuous components, so-called radial Dunkl processes. The latter generalize eigenvalues processes of some matrix-valued processes and reduces to reflected Brownian motion in Weyl chambers. Besides, Brownian motion in Weyl chambers corresponds to all multiplicity values equal one are constructed from a Brownian motion killed when it first hits the boundary of the Weyl chamber using the unique positive harmonic function (up to a constant) on the Weyl chamber. In the analytic side, determinantal formulas appear and are related to harmonic analysis on the Gelfand pair (Gl(n,C), U(n)). This is in agreement on the one side with the so-called reflection principle in stochastic processes theory and matches on the other side the so-called shift principle introduced by E. Opdam. Finally, I'll discuss the spectacular result of Biane-Bougerol-O'connell yielding to a Duistermaat-Heckman distribution for non crystallographic systems.
2013/01/22
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Simon Goodwin (Birmingham University)
Representation theory of finite W-algebras (ENGLISH)
Simon Goodwin (Birmingham University)
Representation theory of finite W-algebras (ENGLISH)
[ Abstract ]
There has been a great deal of recent research interest in finite W-algebras motivated by important connection with primitive ideals of universal enveloping algebras and applications in mathematical physics.
There have been significant breakthroughs in the rerpesentation theory of finite W-algebras due to the research of a variety of mathematicians.
In this talk, we will give an overview of the representation theory of finite W-algebras focussing on W-algebras associated to classical Lie algebras (joint with J. Brown) and W-algebras associated to general linear Lie superalgebras (joint with J. Brown and J. Brundan).
There has been a great deal of recent research interest in finite W-algebras motivated by important connection with primitive ideals of universal enveloping algebras and applications in mathematical physics.
There have been significant breakthroughs in the rerpesentation theory of finite W-algebras due to the research of a variety of mathematicians.
In this talk, we will give an overview of the representation theory of finite W-algebras focussing on W-algebras associated to classical Lie algebras (joint with J. Brown) and W-algebras associated to general linear Lie superalgebras (joint with J. Brown and J. Brundan).
2013/01/08
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Soji Kaneyuki (Sophia University )
On the group of holomorphic and anti-holomorphic transformations
of a compact Hermitian symmetric space and the $G$-structure (JAPANESE)
Soji Kaneyuki (Sophia University )
On the group of holomorphic and anti-holomorphic transformations
of a compact Hermitian symmetric space and the $G$-structure (JAPANESE)
[ Abstract ]
Let $M$ be a compact irreducible Hermitian symmetric space. We determine the full group of holomorphic and anti-holomorphic transformations of $M$. Also we characterize that full group as the automorphism group of the $G$-structure on $M$, called a generalized conformal structure.
Let $M$ be a compact irreducible Hermitian symmetric space. We determine the full group of holomorphic and anti-holomorphic transformations of $M$. Also we characterize that full group as the automorphism group of the $G$-structure on $M$, called a generalized conformal structure.
2012/12/11
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Tatsuyuki Hikita (Kyoto University)
Affine Springer fibers of type A and combinatorics of diagonal
coinvariants
Affine Springer fibers of type A and combinatorics of diagonal
coinvariants (JAPANESE)
Tatsuyuki Hikita (Kyoto University)
Affine Springer fibers of type A and combinatorics of diagonal
coinvariants
Affine Springer fibers of type A and combinatorics of diagonal
coinvariants (JAPANESE)
[ Abstract ]
We introduce certain filtrations on the homology of
affine Springer fibers of type A and give combinatorial formulas for the bigraded Frobenius series of the associated graded modules.
The results are essentially given by generalizations of the symmetric function introduced by Haglund, Haiman, Loehr, Remmel, and Ulyanov which is conjectured to coincide with the bigraded Frobenius series of the ring of diagonal coinvariants.
We introduce certain filtrations on the homology of
affine Springer fibers of type A and give combinatorial formulas for the bigraded Frobenius series of the associated graded modules.
The results are essentially given by generalizations of the symmetric function introduced by Haglund, Haiman, Loehr, Remmel, and Ulyanov which is conjectured to coincide with the bigraded Frobenius series of the ring of diagonal coinvariants.
2012/11/29
16:30-17:30 Room #122 (Graduate School of Math. Sci. Bldg.)
Masaki Watanabe (the University of Tokyo)
On a relation between certain character values of symmetric groups (JAPANESE)
Masaki Watanabe (the University of Tokyo)
On a relation between certain character values of symmetric groups (JAPANESE)
[ Abstract ]
We present a relation of new kind between character values of
symmetric groups which explains a curious phenomenon in character
tables of symmetric groups. Similar relations for characters of
Brauer and walled Brauer algebras and projective characters of
symmetric groups are also presented.
We present a relation of new kind between character values of
symmetric groups which explains a curious phenomenon in character
tables of symmetric groups. Similar relations for characters of
Brauer and walled Brauer algebras and projective characters of
symmetric groups are also presented.
2012/11/27
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Hiroshi Konno (the University of Tokyo)
Convergence of Kahler to real polarizations on flag manifolds (JAPANESE)
Hiroshi Konno (the University of Tokyo)
Convergence of Kahler to real polarizations on flag manifolds (JAPANESE)
[ Abstract ]
In this talk we will discuss geometric quantization of a flag manifold. In particular, we construct a family of complex structures on a flag manifold that converge 'at the quantum level' to the real polarization coming from the Gelfand-Cetlin integrable system.
Our construction is based on a toric degeneration of flag varieties and a deformation of K¥"ahler structure on toric varieties by symplectic potentials.
This is a joint work with Mark Hamilton.
In this talk we will discuss geometric quantization of a flag manifold. In particular, we construct a family of complex structures on a flag manifold that converge 'at the quantum level' to the real polarization coming from the Gelfand-Cetlin integrable system.
Our construction is based on a toric degeneration of flag varieties and a deformation of K¥"ahler structure on toric varieties by symplectic potentials.
This is a joint work with Mark Hamilton.
2012/11/20
16:30-17:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Ali Baklouti (Sfax University)
On the geometry of discontinuous subgroups acting on some homogeneous spaces (ENGLISH)
Ali Baklouti (Sfax University)
On the geometry of discontinuous subgroups acting on some homogeneous spaces (ENGLISH)
[ Abstract ]
Let $G$ be a Lie group, $H$ a closed subgroup of $G$ and \\Gamma$ a discontinuous subgroup for the homogeneous space $G/H$. I first introduce the deformation space ${\\mathcal{T}}^{K_o}(\\Gamma, G, H)$ of the action of $\\Gamma$ on $G/H$ in the sense of Kobayashi and some of its refined versions, namely the Clifford--Klein space of deformations of the form ${\\mathcal{X}}=\\Gamma \\backslash G/H$. The deformation space ${\\mathcal{T}}^{G_o}(\\Gamma, G,H)$ of marked $(G,H)$-structures on ${\\mathcal{X}}$ in the sense of Goldman is also introduced. As an important motivation, I will explain the connection between the spaces ${\\mathcal{T}}^{K_o}(\\Gamma, G, H)$ and ${\\mathcal{T}}^{G_o}(\\Gamma, G, H)$ and study some of their topological features, namely the rigidity in the sense of Selberg--Weil--Kobayashi and the stability in the sense of Kobayashi--Nasrin. The latter appears to be of major interest to write down the connection explicitly.
Let $G$ be a Lie group, $H$ a closed subgroup of $G$ and \\Gamma$ a discontinuous subgroup for the homogeneous space $G/H$. I first introduce the deformation space ${\\mathcal{T}}^{K_o}(\\Gamma, G, H)$ of the action of $\\Gamma$ on $G/H$ in the sense of Kobayashi and some of its refined versions, namely the Clifford--Klein space of deformations of the form ${\\mathcal{X}}=\\Gamma \\backslash G/H$. The deformation space ${\\mathcal{T}}^{G_o}(\\Gamma, G,H)$ of marked $(G,H)$-structures on ${\\mathcal{X}}$ in the sense of Goldman is also introduced. As an important motivation, I will explain the connection between the spaces ${\\mathcal{T}}^{K_o}(\\Gamma, G, H)$ and ${\\mathcal{T}}^{G_o}(\\Gamma, G, H)$ and study some of their topological features, namely the rigidity in the sense of Selberg--Weil--Kobayashi and the stability in the sense of Kobayashi--Nasrin. The latter appears to be of major interest to write down the connection explicitly.
2012/11/13
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Oskar Hamlet (Chalmers University)
Tight maps, a classification (ENGLISH)
Oskar Hamlet (Chalmers University)
Tight maps, a classification (ENGLISH)
[ Abstract ]
Tight maps/homomorphisms were introduced during the study of rigidity properties of surface groups in Hermitian Lie groups. In this talk I'll discuss the properties of tight maps, their connection to rigidity theory and my work classifying them.
Tight maps/homomorphisms were introduced during the study of rigidity properties of surface groups in Hermitian Lie groups. In this talk I'll discuss the properties of tight maps, their connection to rigidity theory and my work classifying them.
2012/11/06
16:30-17:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Takayuki Okuda (the University of Tokyo)
An explicit construction of spherical designs on S^3 (JAPANESE)
Takayuki Okuda (the University of Tokyo)
An explicit construction of spherical designs on S^3 (JAPANESE)
[ Abstract ]
The existence of spherical t-designs on S^d for any t and d are proved by Seymour--Zaslavsky in 1984.
However, explicit constructions of spherical designs were not known for d > 2 and large t.
In this talk, for a given spherical t-design Y on S^2, we give an
algorithm to make a spherical 2t-design X on S^3 which maps Y by a Hopf map. In particular, by combining with the results of Kuperberg in 2005, we have an explicit construction of spherical t-designs on S^3 for any t.
The existence of spherical t-designs on S^d for any t and d are proved by Seymour--Zaslavsky in 1984.
However, explicit constructions of spherical designs were not known for d > 2 and large t.
In this talk, for a given spherical t-design Y on S^2, we give an
algorithm to make a spherical 2t-design X on S^3 which maps Y by a Hopf map. In particular, by combining with the results of Kuperberg in 2005, we have an explicit construction of spherical t-designs on S^3 for any t.
2012/07/24
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Toshihisa Kubo (the University of Tokyo)
The Dynkin index and conformally invariant systems of Heisenberg parabolic type (ENGLISH)
Toshihisa Kubo (the University of Tokyo)
The Dynkin index and conformally invariant systems of Heisenberg parabolic type (ENGLISH)
[ Abstract ]
Recently, Barchini-Kable-Zierau systematically constructed conformally invariant systems of differential operators using Heisenberg parabolic subalgebras. When they built such systems, two constants, which are defined as the constant of proportionality between two expressions,played an important role. In this talk we give concrete and uniform expressions for these constants. To do so the Dynkin index of a finite dimensional representation of a complex simple Lie algebra plays a key role.
Recently, Barchini-Kable-Zierau systematically constructed conformally invariant systems of differential operators using Heisenberg parabolic subalgebras. When they built such systems, two constants, which are defined as the constant of proportionality between two expressions,played an important role. In this talk we give concrete and uniform expressions for these constants. To do so the Dynkin index of a finite dimensional representation of a complex simple Lie algebra plays a key role.
2012/07/17
17:00-18:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Eric Opdam (Universiteit van Amsterdam)
Dirac induction for graded affine Hecke algebras (ENGLISH)
Eric Opdam (Universiteit van Amsterdam)
Dirac induction for graded affine Hecke algebras (ENGLISH)
[ Abstract ]
In recent joint work with Dan Ciubotaru and Peter Trapa we
constructed a model for the discrete series representations of graded affine Hecke algebras as the index of a Dirac operator.
We discuss the K-theoretic meaning of this result, and the remarkable relation between elliptic character theory of a Weyl group and the ordinary character theory of its Pin cover.
In recent joint work with Dan Ciubotaru and Peter Trapa we
constructed a model for the discrete series representations of graded affine Hecke algebras as the index of a Dirac operator.
We discuss the K-theoretic meaning of this result, and the remarkable relation between elliptic character theory of a Weyl group and the ordinary character theory of its Pin cover.
2012/06/12
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Toshihisa Kubo (the University of Tokyo)
Conformally invariant systems of differential operators of non-Heisenberg parabolic type (ENGLISH)
Toshihisa Kubo (the University of Tokyo)
Conformally invariant systems of differential operators of non-Heisenberg parabolic type (ENGLISH)
[ Abstract ]
The wave operator in Minkowski space is a classical example of a conformally invariant differential operator.
Recently, the notion of conformality of one operator has been
generalized by Barchini-Kable-Zierau to systems of differential operators.
Such systems yield homomrophisms between generalized Verma modules. In this talk we build such systems of second-order differential operators in the maximal non-Heisenberg parabolic setting.
If time permits then we will discuss the corresponding homomorphisms between generalized Verma modules.
The wave operator in Minkowski space is a classical example of a conformally invariant differential operator.
Recently, the notion of conformality of one operator has been
generalized by Barchini-Kable-Zierau to systems of differential operators.
Such systems yield homomrophisms between generalized Verma modules. In this talk we build such systems of second-order differential operators in the maximal non-Heisenberg parabolic setting.
If time permits then we will discuss the corresponding homomorphisms between generalized Verma modules.
2012/06/05
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Yves Benoist (CNRS and Orsay)
Random walk on reductive groups (ENGLISH)
Yves Benoist (CNRS and Orsay)
Random walk on reductive groups (ENGLISH)
[ Abstract ]
The asymptotic behavior of the sum of real numbers chosen independantly with same probability law is controled by many classical theorems: Law of Large Numbers, Central Limit Theorem, Law of Iterated Logarithm, Local Limit Theorem, Large deviation Principle, 0-1 Law,... In these introductory talks I will recall these classical results and explain their analogs for products of matrices chosen independantly with same probability law, when the action of the support of the law is semisimple. We will see that the dynamics of the corresponding action on the flag variety is a crucial tool for studying these non-commutative random walks.
The asymptotic behavior of the sum of real numbers chosen independantly with same probability law is controled by many classical theorems: Law of Large Numbers, Central Limit Theorem, Law of Iterated Logarithm, Local Limit Theorem, Large deviation Principle, 0-1 Law,... In these introductory talks I will recall these classical results and explain their analogs for products of matrices chosen independantly with same probability law, when the action of the support of the law is semisimple. We will see that the dynamics of the corresponding action on the flag variety is a crucial tool for studying these non-commutative random walks.
2011/12/13
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Hung Yean Loke (National University of Singapore)
Local Theta lifts of unitary lowest weight modules to the indefinite orthogonal groups (ENGLISH)
Hung Yean Loke (National University of Singapore)
Local Theta lifts of unitary lowest weight modules to the indefinite orthogonal groups (ENGLISH)
[ Abstract ]
In this talk, I will discuss the local theta lifts of unitary lowest weight modules of $Sp(2p,R)$ to the indefinite orthogonal group $O(n,m)$. In a previous paper, Nishiyama and Zhu computed the associated cycles when the dual pair $Sp(2p,R) \\times O(m,n)$ lies in the stable range, ie. $2p \\leq \\min(m,n)$. In this talk, I will report on a joint work with Jiajun Ma and U-Liang Tang at NUS where we extend the computation beyond the stable range. Our approach is to analyze the coherent sheaves generated by the graded modules.
We will also need the Kobayashi's projection formula for discretely decomposable restrictions. Our study produces some interesting formulas on the $K$-types of the representations. In particular for some of these representations, the $K$-types formulas agree those in a conjecture of Vogan on the unipotent representations.
In this talk, I will discuss the local theta lifts of unitary lowest weight modules of $Sp(2p,R)$ to the indefinite orthogonal group $O(n,m)$. In a previous paper, Nishiyama and Zhu computed the associated cycles when the dual pair $Sp(2p,R) \\times O(m,n)$ lies in the stable range, ie. $2p \\leq \\min(m,n)$. In this talk, I will report on a joint work with Jiajun Ma and U-Liang Tang at NUS where we extend the computation beyond the stable range. Our approach is to analyze the coherent sheaves generated by the graded modules.
We will also need the Kobayashi's projection formula for discretely decomposable restrictions. Our study produces some interesting formulas on the $K$-types of the representations. In particular for some of these representations, the $K$-types formulas agree those in a conjecture of Vogan on the unipotent representations.
2011/12/13
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Hung Yean Loke (National University of Singapore)
Local Theta lifts of unitary lowest weight modules to the indefinite orthogonal groups (ENGLISH)
Hung Yean Loke (National University of Singapore)
Local Theta lifts of unitary lowest weight modules to the indefinite orthogonal groups (ENGLISH)
[ Abstract ]
In this talk, I will discuss the local theta lifts of unitary lowest weight modules of $Sp(2p,R)$ to the indefinite orthogonal group $O(n,m)$. In a previous paper, Nishiyama and Zhu computed the associated cycles when the dual pair $Sp(2p,R) \\times O(m,n)$ lies in the stable range, ie. $2p \\leq \\min(m,n)$. In this talk, I will report on a joint work with Jiajun Ma and U-Liang Tang at NUS where we extend the computation beyond the stable range. Our approach is to analyze the coherent sheaves generated by the graded modules.
We will also need the Kobayashi's projection formula for discretely decomposable restrictions. Our study produces some interesting formulas on the $K$-types of the representations. In particular for some of these representations, the $K$-types formulas agree those in a conjecture of Vogan on the unipotent representations.
In this talk, I will discuss the local theta lifts of unitary lowest weight modules of $Sp(2p,R)$ to the indefinite orthogonal group $O(n,m)$. In a previous paper, Nishiyama and Zhu computed the associated cycles when the dual pair $Sp(2p,R) \\times O(m,n)$ lies in the stable range, ie. $2p \\leq \\min(m,n)$. In this talk, I will report on a joint work with Jiajun Ma and U-Liang Tang at NUS where we extend the computation beyond the stable range. Our approach is to analyze the coherent sheaves generated by the graded modules.
We will also need the Kobayashi's projection formula for discretely decomposable restrictions. Our study produces some interesting formulas on the $K$-types of the representations. In particular for some of these representations, the $K$-types formulas agree those in a conjecture of Vogan on the unipotent representations.
2011/11/29
16:30-18:00 Room #002 (Graduate School of Math. Sci. Bldg.)
Daniel Sternheimer (Rikkyo Univertiry and Université de Bourgogne)
Symmetries, (their) deformations, and physics: some perspectives and open problems from half a century of personal experience (ENGLISH)
Daniel Sternheimer (Rikkyo Univertiry and Université de Bourgogne)
Symmetries, (their) deformations, and physics: some perspectives and open problems from half a century of personal experience (ENGLISH)
[ Abstract ]
This is a flexible general framework, based on quite a number of papers, some of which are reviewed in:
MR2285047 (2008c:53079) Sternheimer, Daniel. The geometry of space-time and its deformations from a physical perspective. From geometry to quantum mechanics, 287–301, Progr. Math., 252, Birkhäuser Boston, Boston, MA, 2007
http://monge.u-bourgogne.fr/d.sternh/papers/PiMOmori-DS.pdf
This is a flexible general framework, based on quite a number of papers, some of which are reviewed in:
MR2285047 (2008c:53079) Sternheimer, Daniel. The geometry of space-time and its deformations from a physical perspective. From geometry to quantum mechanics, 287–301, Progr. Math., 252, Birkhäuser Boston, Boston, MA, 2007
http://monge.u-bourgogne.fr/d.sternh/papers/PiMOmori-DS.pdf
2011/11/22
16:30-18:00 Room #002 (Graduate School of Math. Sci. Bldg.)
Takayuki Okuda (東京大学大学院 数理科学研究科)
Smallest complex nilpotent orbit with real points (JAPANESE)
Takayuki Okuda (東京大学大学院 数理科学研究科)
Smallest complex nilpotent orbit with real points (JAPANESE)
[ Abstract ]
Let $\\mathfrak{g}$ be a non-compact simple Lie algebra with no complex
structures.
In this talk, we show that there exists a complex nilpotent orbit
$\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$ in
$\\mathfrak{g}_\\mathbb{C}$ ($:=\\mathfrak{g} \\otimes \\mathbb{C}$)
containing all of real nilpotent orbits in $\\mathfrak{g}$ of minimal
positive dimension.
For many $\\mathfrak{g}$, the orbit
$\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$ is just the
complex minimal nilpotent orbit in $\\mathfrak{g}_\\mathbb{C}$.
However, for the cases where $\\mathfrak{g}$ is isomorphic to
$\\mathfrak{su}^*(2k)$, $\\mathfrak{so}(n-1,1)$, $\\mathfrak{sp}(p,q)$,
$\\mathfrak{e}_{6(-26)}$ or $\\mathfrak{f}_{4(-20)}$,
the orbit $\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$ is not
the complex minimal nilpotent orbit in $\\mathfrak{g}_\\mathbb{C}$.
We also determine $\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$
by describing the weighted Dynkin diagrams of these for such cases.
Let $\\mathfrak{g}$ be a non-compact simple Lie algebra with no complex
structures.
In this talk, we show that there exists a complex nilpotent orbit
$\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$ in
$\\mathfrak{g}_\\mathbb{C}$ ($:=\\mathfrak{g} \\otimes \\mathbb{C}$)
containing all of real nilpotent orbits in $\\mathfrak{g}$ of minimal
positive dimension.
For many $\\mathfrak{g}$, the orbit
$\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$ is just the
complex minimal nilpotent orbit in $\\mathfrak{g}_\\mathbb{C}$.
However, for the cases where $\\mathfrak{g}$ is isomorphic to
$\\mathfrak{su}^*(2k)$, $\\mathfrak{so}(n-1,1)$, $\\mathfrak{sp}(p,q)$,
$\\mathfrak{e}_{6(-26)}$ or $\\mathfrak{f}_{4(-20)}$,
the orbit $\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$ is not
the complex minimal nilpotent orbit in $\\mathfrak{g}_\\mathbb{C}$.
We also determine $\\mathcal{O}^{G_\\mathbb{C}}_{\\text{min},\\mathfrak{g}}$
by describing the weighted Dynkin diagrams of these for such cases.
2011/11/15
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Laurant Demonet (Nagoya University)
Categorification of cluster algebras arising from unipotent subgroups of non-simply laced Lie groups (ENGLISH)
Laurant Demonet (Nagoya University)
Categorification of cluster algebras arising from unipotent subgroups of non-simply laced Lie groups (ENGLISH)
[ Abstract ]
We introduce an abstract framework to categorify some antisymetrizable cluster algebras by using actions of finite groups on stably 2-Calabi-Yau exact categories. We introduce the notion of the equivariant category and, with similar technics as in [K], [CK], [GLS1], [GLS2], [DK], [FK], [P], we construct some examples of such categorifications. For example, if we let Z/2Z act on the category of representations of the preprojective algebra of type A2n-1 via the only non trivial action on the diagram, we obtain the cluster structure on the coordinate ring of the maximal unipotent subgroup of the semi-simple Lie group of type Bn [D]. Hence, we can get relations between the cluster algebras categorified by some exact subcategories of these two categories. We also prove by the same methods as in [FK] a conjecture of Fomin and Zelevinsky stating that the cluster monomials are linearly independent.
References
[CK] P. Caldero, B. Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), no. 1, 169--211.
[DK] R. Dehy, B. Keller, On the combinatorics of rigid objects in 2-Calabi-Yau categories, arXiv: 0709.0882.
[D] L. Demonet, Cluster algebras and preprojective algebras: the non simply-laced case, C. R. Acad. Sci. Paris, Ser. I 346 (2008), 379--384.
[FK] C. Fu, B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, arXiv: 0710.3152.
[GLS1] C. Geiss, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), no. 3, 589--632.
[GLS2] C. Geiss, B. Leclerc, J. Schröer, Cluster algebra structures and semicanoncial bases for unipotent groups, arXiv: math/0703039.
[K] B. Keller, Categorification of acyclic cluster algebras: an introduction, arXiv: 0801.3103.
[P] Y. Palu, Cluster characters for triangulated 2-Calabi--Yau categories, arXiv: math/0703540.
We introduce an abstract framework to categorify some antisymetrizable cluster algebras by using actions of finite groups on stably 2-Calabi-Yau exact categories. We introduce the notion of the equivariant category and, with similar technics as in [K], [CK], [GLS1], [GLS2], [DK], [FK], [P], we construct some examples of such categorifications. For example, if we let Z/2Z act on the category of representations of the preprojective algebra of type A2n-1 via the only non trivial action on the diagram, we obtain the cluster structure on the coordinate ring of the maximal unipotent subgroup of the semi-simple Lie group of type Bn [D]. Hence, we can get relations between the cluster algebras categorified by some exact subcategories of these two categories. We also prove by the same methods as in [FK] a conjecture of Fomin and Zelevinsky stating that the cluster monomials are linearly independent.
References
[CK] P. Caldero, B. Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), no. 1, 169--211.
[DK] R. Dehy, B. Keller, On the combinatorics of rigid objects in 2-Calabi-Yau categories, arXiv: 0709.0882.
[D] L. Demonet, Cluster algebras and preprojective algebras: the non simply-laced case, C. R. Acad. Sci. Paris, Ser. I 346 (2008), 379--384.
[FK] C. Fu, B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, arXiv: 0710.3152.
[GLS1] C. Geiss, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), no. 3, 589--632.
[GLS2] C. Geiss, B. Leclerc, J. Schröer, Cluster algebra structures and semicanoncial bases for unipotent groups, arXiv: math/0703039.
[K] B. Keller, Categorification of acyclic cluster algebras: an introduction, arXiv: 0801.3103.
[P] Y. Palu, Cluster characters for triangulated 2-Calabi--Yau categories, arXiv: math/0703540.
2011/10/25
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Yoshiki Oshima (Graduate School of Mathematical Sciences, the University of Tokyo)
Localization of Cohomological Induction (ENGLISH)
Yoshiki Oshima (Graduate School of Mathematical Sciences, the University of Tokyo)
Localization of Cohomological Induction (ENGLISH)
[ Abstract ]
Cohomological induction is defined for (g,K)-modules in an algebraic way and construct important representations such as (Harish-Chandra modules of) discrete series representations,
principal series representations and Zuckerman's modules of
semisimple Lie groups.
Hecht, Milicic, Schmid, and Wolf proved that modules induced from
one-dimensional representations of Borel subalgebra can be realized as D-modules on the flag variety.
In this talk, we show a similar result for modules induced from
more general representations.
Cohomological induction is defined for (g,K)-modules in an algebraic way and construct important representations such as (Harish-Chandra modules of) discrete series representations,
principal series representations and Zuckerman's modules of
semisimple Lie groups.
Hecht, Milicic, Schmid, and Wolf proved that modules induced from
one-dimensional representations of Borel subalgebra can be realized as D-modules on the flag variety.
In this talk, we show a similar result for modules induced from
more general representations.
2011/06/07
16:30-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Masahiko Kanai (the University of Tokyo)
Rigidity of group actions via invariant geometric structures
(JAPANESE)
Masahiko Kanai (the University of Tokyo)
Rigidity of group actions via invariant geometric structures
(JAPANESE)
[ Abstract ]
It is a homomorphism into a FINITE dimensional Lie group that is concerned with in the classical RIGIDITY theorems such as those of Mostow and Margulis. In the meantime, differentiable GROUP ACTIONS for which we ask rigidity problems is a homomorphism into a diffeomorphism group, which is a typical example of INFINITE dimensional Lie groups. The purpose of the present talk is exhibiting several rigidity theorems for group actions in which I have been involved for years. Although quite a few fields of mathematics, such as ergodic theory, the theory of smooth dynamical systems, representation theory and so on, have made remarkable contributions to rigidity problems, I would rather emphasis geometric aspects: I would focus on those rigidity phenomenon for group actions that are observed by showing that the actions have INVARIANT GEOMETRIC STRUCTURES.
It is a homomorphism into a FINITE dimensional Lie group that is concerned with in the classical RIGIDITY theorems such as those of Mostow and Margulis. In the meantime, differentiable GROUP ACTIONS for which we ask rigidity problems is a homomorphism into a diffeomorphism group, which is a typical example of INFINITE dimensional Lie groups. The purpose of the present talk is exhibiting several rigidity theorems for group actions in which I have been involved for years. Although quite a few fields of mathematics, such as ergodic theory, the theory of smooth dynamical systems, representation theory and so on, have made remarkable contributions to rigidity problems, I would rather emphasis geometric aspects: I would focus on those rigidity phenomenon for group actions that are observed by showing that the actions have INVARIANT GEOMETRIC STRUCTURES.
2011/05/31
16:30-17:30 Room #126 (Graduate School of Math. Sci. Bldg.)
Hirotake Kurihara (Tohoku University)
On character tables of association schemes based on attenuated
spaces (JAPANESE)
Hirotake Kurihara (Tohoku University)
On character tables of association schemes based on attenuated
spaces (JAPANESE)
[ Abstract ]
An association scheme is a pair of a finite set $X$
and a set of relations $\\{R_i\\}_{0\\le i\\le d}$
on $X$ which satisfies several axioms of regularity.
The notion of association schemes is viewed as some axiomatized
properties of transitive permutation groups in terms of combinatorics, and also the notion of association schemes is regarded as a generalization of the subring of the group ring spanned by the conjugacy classes of finite groups.
Thus, the theory of association schemes had been developed in the
study of finite permutation groups and representation theory.
To determine the character tables of association schemes is an
important first step to a systematic study of association schemes, and is helpful toward the classification of those schemes.
In this talk, we determine the character tables of association schemes based on attenuated spaces.
These association schemes are obtained from subspaces of a given
dimension in attenuated spaces.
An association scheme is a pair of a finite set $X$
and a set of relations $\\{R_i\\}_{0\\le i\\le d}$
on $X$ which satisfies several axioms of regularity.
The notion of association schemes is viewed as some axiomatized
properties of transitive permutation groups in terms of combinatorics, and also the notion of association schemes is regarded as a generalization of the subring of the group ring spanned by the conjugacy classes of finite groups.
Thus, the theory of association schemes had been developed in the
study of finite permutation groups and representation theory.
To determine the character tables of association schemes is an
important first step to a systematic study of association schemes, and is helpful toward the classification of those schemes.
In this talk, we determine the character tables of association schemes based on attenuated spaces.
These association schemes are obtained from subspaces of a given
dimension in attenuated spaces.
2011/05/24
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Jun-ichi Mukuno (Nagoya University)
Properly discontinuous isometric group actions on inhomogeneous Lorentzian manifolds (JAPANESE)
Jun-ichi Mukuno (Nagoya University)
Properly discontinuous isometric group actions on inhomogeneous Lorentzian manifolds (JAPANESE)
[ Abstract ]
If a homogeneous space $G/H$ is acted properly discontinuously
upon by a subgroup $\\Gamma$ of $G$ via the left action, the quotient space $\\Gamma \\backslash G/H$ is called a
Clifford--Klein form. In 1962, E. Calabi and L. Markus proved that there is no infinite subgroup of the Lorentz group $O(n+1, 1)$ whose left action on the de Sitter space $O(n+1, 1)/O(n, 1)$ is properly discontinuous.
It follows that a compact Clifford--Klein form of the de Sitter space never exists.
In this talk, we present a new extension of the theorem of E. Calabi and L. Markus to a certain class of Lorentzian manifolds that are not necessarily homogeneous.
If a homogeneous space $G/H$ is acted properly discontinuously
upon by a subgroup $\\Gamma$ of $G$ via the left action, the quotient space $\\Gamma \\backslash G/H$ is called a
Clifford--Klein form. In 1962, E. Calabi and L. Markus proved that there is no infinite subgroup of the Lorentz group $O(n+1, 1)$ whose left action on the de Sitter space $O(n+1, 1)/O(n, 1)$ is properly discontinuous.
It follows that a compact Clifford--Klein form of the de Sitter space never exists.
In this talk, we present a new extension of the theorem of E. Calabi and L. Markus to a certain class of Lorentzian manifolds that are not necessarily homogeneous.
2011/04/26
16:30-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Taro YOSHINO (the University of Tokyo)
Topological Blow-up (JAPANESE)
Taro YOSHINO (the University of Tokyo)
Topological Blow-up (JAPANESE)
[ Abstract ]
Suppose that a Lie group $G$ acts on a manifold
$M$. The quotient space $X:=G\\backslash M$ is locally compact,
but not Hausdorff in general. Our aim is to understand
such a non-Hausdorff space $X$.
The space $X$ has the crack $S$. Rougly speaking, $S$ is
the causal subset of non-Hausdorffness of $X$, and especially
$X\\setminus S$ is Hausdorff.
We introduce the concept of `topological blow-up' as a `repair'
of the crack. The `repaired' space $\\tilde{X}$ is
locally compact and Hausdorff space containing $X\\setminus S$
as its open subset. Moreover, the original space $X$ can be
recovered from the pair of $(\\tilde{X}, S)$.
Suppose that a Lie group $G$ acts on a manifold
$M$. The quotient space $X:=G\\backslash M$ is locally compact,
but not Hausdorff in general. Our aim is to understand
such a non-Hausdorff space $X$.
The space $X$ has the crack $S$. Rougly speaking, $S$ is
the causal subset of non-Hausdorffness of $X$, and especially
$X\\setminus S$ is Hausdorff.
We introduce the concept of `topological blow-up' as a `repair'
of the crack. The `repaired' space $\\tilde{X}$ is
locally compact and Hausdorff space containing $X\\setminus S$
as its open subset. Moreover, the original space $X$ can be
recovered from the pair of $(\\tilde{X}, S)$.
2011/01/18
17:00-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Pierre Clare (Universite Orleans and the University of Tokyo)
Connections between Noncommutative Geometry and Lie groups
representations (ENGLISH)
Pierre Clare (Universite Orleans and the University of Tokyo)
Connections between Noncommutative Geometry and Lie groups
representations (ENGLISH)
[ Abstract ]
One of the principles of Noncommutative Geometry is to study singular spaces that the tools of classical analysis like algebras of continuous functions fail to describe, replacing them by more general C*-algebras. After recalling fundamental facts about C*-algebras, Hilbert modules and group C*-algebras, we will present constructions and results aiming to understand principal series representations and Knapp-Stein theory in the noncommutative geometrical framework. Eventually we will explain the relationship between the analysis of reduced group C*-algebras and the computation of the Connes-Kasparov isomorphisms.
One of the principles of Noncommutative Geometry is to study singular spaces that the tools of classical analysis like algebras of continuous functions fail to describe, replacing them by more general C*-algebras. After recalling fundamental facts about C*-algebras, Hilbert modules and group C*-algebras, we will present constructions and results aiming to understand principal series representations and Knapp-Stein theory in the noncommutative geometrical framework. Eventually we will explain the relationship between the analysis of reduced group C*-algebras and the computation of the Connes-Kasparov isomorphisms.
2010/12/21
16:30-18:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Katsuyuki NAOI (Graduate School of Mathematical Sciences, the University of Tokyo)
Some relation between the Weyl module and the crystal basis of the tensor product of fudamental representations (ENGLISH)
Katsuyuki NAOI (Graduate School of Mathematical Sciences, the University of Tokyo)
Some relation between the Weyl module and the crystal basis of the tensor product of fudamental representations (ENGLISH)