Number Theory Seminar
Seminar information archive ~10/15|Next seminar|Future seminars 10/16~
Date, time & place | Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Naoki Imai, Shane Kelly |
2013/11/20
16:40-17:40 Room #056 (Graduate School of Math. Sci. Bldg.)
Valentina Di Proietto (The University of Tokyo)
On the homotopy exact sequence for the logarithmic de Rham fundamental group (ENGLISH)
Valentina Di Proietto (The University of Tokyo)
On the homotopy exact sequence for the logarithmic de Rham fundamental group (ENGLISH)
[ Abstract ]
Let K be a field of characteristic 0 and let X* be a quasi-projective simple normal crossing log variety over the log point K* associated to K. We construct a log de Rham version of the homotopy sequence \\pi_1(X*/K*)-->\\pi_1(X*/K)--\\pi_1(K*/K)-->1 and prove that it is exact. Moreover we show the injectivity of the first map for certain quotients of the groups. Our proofs are purely algebraic. This is a joint work with A. Shiho.
Let K be a field of characteristic 0 and let X* be a quasi-projective simple normal crossing log variety over the log point K* associated to K. We construct a log de Rham version of the homotopy sequence \\pi_1(X*/K*)-->\\pi_1(X*/K)--\\pi_1(K*/K)-->1 and prove that it is exact. Moreover we show the injectivity of the first map for certain quotients of the groups. Our proofs are purely algebraic. This is a joint work with A. Shiho.