Number Theory Seminar

Seminar information archive ~12/10Next seminarFuture seminars 12/11~

Date, time & place Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Naoki Imai, Shane Kelly


16:30-17:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Takashi Hara (University of Tokyo)
Inductive construction of the p-adic zeta functions for non-commutative
p-extensions of totally real fields with exponent p (JAPANESE)
[ Abstract ]
We will discuss how to construct p-adic zeta functions and verify
the main conjecture in special cases in non-commutative Iwasawa theory
for totally real number fields.

The non-commutative Iwasawa main conjecture for totally real number
fields has been verified in special cases by Kazuya Kato,
Mahesh Kakde and the speaker by `patching method of p-adic zeta functions'
introduced by David Burns and Kazuya Kato (Jurgen Ritter and Alfred Weiss
have also constructed the successful example of the main conjecture
under somewhat different formulations).

In this talk we will explain that we can prove the main conjecture
for cases where the Galois group is isomorphic
to the direct product of the ring of p-adic integer and a finite p-group
of exponent p by utilizing Burns-Kato's method and inductive arguments.

Finally we remark that in 2010 Ritter-Weiss and Kakde independently
justified the non-commutative main conjecture
for totally real number fields under general settings.