## Tuesday Seminar on Topology

Seminar information archive ～09/23｜Next seminar｜Future seminars 09/24～

Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|

Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |

**Seminar information archive**

### 2018/07/03

17:00-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)

Symmetries on algebras and Hochschild homology in view of categories of operators (JAPANESE)

**Jun Yoshida**(The University of Tokyo)Symmetries on algebras and Hochschild homology in view of categories of operators (JAPANESE)

[ Abstract ]

The categorical construction of Hochschild homology by Connes reveals that the symmetric structure on the tensor product of abelian groups is essential. It means that the categorical meaning of ad-hoc generalizations of Hochschild homology in less symmetric monoidal abelian categories remains unclear. In this talk, I will propose formulation of this problem in terms of group operads introduced by Zhang. Moreover, for each group operad G, G-symmetric versions of categories of operators will be discussed. The notion plays a key role in defining Hochschild homology for homotopy algebras; such as topological Hochschild homology.

The categorical construction of Hochschild homology by Connes reveals that the symmetric structure on the tensor product of abelian groups is essential. It means that the categorical meaning of ad-hoc generalizations of Hochschild homology in less symmetric monoidal abelian categories remains unclear. In this talk, I will propose formulation of this problem in terms of group operads introduced by Zhang. Moreover, for each group operad G, G-symmetric versions of categories of operators will be discussed. The notion plays a key role in defining Hochschild homology for homotopy algebras; such as topological Hochschild homology.

### 2018/06/19

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Characteristic classes via 4-dimensional gauge theory (JAPANESE)

**Hokuto Konno**(The University of Tokyo)Characteristic classes via 4-dimensional gauge theory (JAPANESE)

[ Abstract ]

Using gauge theory, more precisely SO(3)-Yang-Mills theory and Seiberg-Witten theory, I will construct characteristic classes of 4-manifold bundles. These characteristic classes are extensions of the SO(3)-Donaldson invariant and the Seiberg-Witten invariant to families of 4-manifolds, and can detect non-triviality of smooth 4-manifold bundles. The basic idea of the construction of these characteristic classes is to consider an infinite dimensional analogue of classical characteristic classes of manifold bundles, typified by the Mumford-Morita-Miller classes for surface bundles.

Using gauge theory, more precisely SO(3)-Yang-Mills theory and Seiberg-Witten theory, I will construct characteristic classes of 4-manifold bundles. These characteristic classes are extensions of the SO(3)-Donaldson invariant and the Seiberg-Witten invariant to families of 4-manifolds, and can detect non-triviality of smooth 4-manifold bundles. The basic idea of the construction of these characteristic classes is to consider an infinite dimensional analogue of classical characteristic classes of manifold bundles, typified by the Mumford-Morita-Miller classes for surface bundles.

### 2018/06/19

14:30-16:00 Room #056 (Graduate School of Math. Sci. Bldg.)

Relative and equivariant Lagrangian Floer homology and Atiyah-Floer conjecture (JAPANESE)

**Kenji Fukaya**(Simons center, SUNY)Relative and equivariant Lagrangian Floer homology and Atiyah-Floer conjecture (JAPANESE)

[ Abstract ]

Atiyah-Floer conjecture concerns a relationship between Floer homology in Gauge theory and Lagrangian Floer homology. One of its difficulty is that the symplectic manifold on wich we consider Lagrangian Floer homology is in general singular. In this talk I will explain that, by using relative and equivariant version of Lagrangian Floer homology, we can resolve this problem and can at least state the conjecture as rigorous mathematical conjecture.

Atiyah-Floer conjecture concerns a relationship between Floer homology in Gauge theory and Lagrangian Floer homology. One of its difficulty is that the symplectic manifold on wich we consider Lagrangian Floer homology is in general singular. In this talk I will explain that, by using relative and equivariant version of Lagrangian Floer homology, we can resolve this problem and can at least state the conjecture as rigorous mathematical conjecture.

### 2018/06/12

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Turbulization of 2-dimensional foliations on 4-manifolds (JAPANESE)

**Yoshihiko Mitsumatsu**(Chuo University)Turbulization of 2-dimensional foliations on 4-manifolds (JAPANESE)

[ Abstract ]

This is a report on a joint work with Elmar VOGT(Freie Universität Berlin). For codimension 1 foliations, the process of turbulization, i.e., inserting a Reeb component along a closed transversal, is well-known, while for higher codimensional foliation, similar processes were not understood until around 2006.

In this talk, first we formulate the turbulization along a closed transversal. Then in our dimension setting, namely 2-dimensional foliations on 4-manifolds ((4,2)-foliations), a cohomological criterion is given for a given transversal to a foliation, which tells the turbulization is possible or not, relying on the Thurston's h-principle. Also we give cocrete geometric constructions of turbulizations.

The cohomological criterion for turbulization is deduced from a more general criterion for a given embedded surface to be a compact leaf or a closed transversal of some foliation, which is stated in terms of the euler classes of tangent and normal bndle of the foliation to look for. The anormalous cohomological solutions for certain cases suggested the geometric realization of turbulization, while the cohomological criterion is obtained by the h-principle.

Some other modifications are also formulated for (4,2)-foliations and their possibility are assured by the anormalous solutions mentioned above. For some of them, good geometric realizations are not yet known. So far the difficulty lies on the problem of the connected components of the space of representations of the surface groups to Diff S^1.

If the time permits, some special features on the h-principle for 2-dimensional foliations are also explained.

This is a report on a joint work with Elmar VOGT(Freie Universität Berlin). For codimension 1 foliations, the process of turbulization, i.e., inserting a Reeb component along a closed transversal, is well-known, while for higher codimensional foliation, similar processes were not understood until around 2006.

In this talk, first we formulate the turbulization along a closed transversal. Then in our dimension setting, namely 2-dimensional foliations on 4-manifolds ((4,2)-foliations), a cohomological criterion is given for a given transversal to a foliation, which tells the turbulization is possible or not, relying on the Thurston's h-principle. Also we give cocrete geometric constructions of turbulizations.

The cohomological criterion for turbulization is deduced from a more general criterion for a given embedded surface to be a compact leaf or a closed transversal of some foliation, which is stated in terms of the euler classes of tangent and normal bndle of the foliation to look for. The anormalous cohomological solutions for certain cases suggested the geometric realization of turbulization, while the cohomological criterion is obtained by the h-principle.

Some other modifications are also formulated for (4,2)-foliations and their possibility are assured by the anormalous solutions mentioned above. For some of them, good geometric realizations are not yet known. So far the difficulty lies on the problem of the connected components of the space of representations of the surface groups to Diff S^1.

If the time permits, some special features on the h-principle for 2-dimensional foliations are also explained.

### 2018/06/05

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Topological full groups and generalizations of the Higman-Thompson groups (JAPANESE)

**Hiroki Matui**(Chiba University)Topological full groups and generalizations of the Higman-Thompson groups (JAPANESE)

[ Abstract ]

For a topological dynamical system on the Cantor set, one can introduce its topological full group, which is a countable subgroup of the homeomorphism group of the Cantor set. The Higman-Thompson group V_n is regarded as the topological full group of the one-sided full shift over n symbols. Replacing the one-sided full shift with other dynamical systems, we obtain variants of the Higman-Thompson group. It is then natural to ask whether those generalized Higman-Thompson groups possess similar (or different) features. I would like to discuss isomorphism classes of these groups, finiteness properties, abelianizations, connections to C*-algebras and their K-theory, and so on.

For a topological dynamical system on the Cantor set, one can introduce its topological full group, which is a countable subgroup of the homeomorphism group of the Cantor set. The Higman-Thompson group V_n is regarded as the topological full group of the one-sided full shift over n symbols. Replacing the one-sided full shift with other dynamical systems, we obtain variants of the Higman-Thompson group. It is then natural to ask whether those generalized Higman-Thompson groups possess similar (or different) features. I would like to discuss isomorphism classes of these groups, finiteness properties, abelianizations, connections to C*-algebras and their K-theory, and so on.

### 2018/05/29

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

A partial order on nu+ equivalence classes (JAPANESE)

**Kouki Sato**(The university of Tokyo)A partial order on nu+ equivalence classes (JAPANESE)

[ Abstract ]

The nu+ equivalence is an equivalence relation on the knot concordance group. Hom proves that many concordance invariants derived from Heegaard Floer homology are invariant under nu+ equivalence. In this work, we introduce a partial order on nu+ equivalence classes, and study its algebraic and geometrical properties. As an application, we prove that any genus one knot is nu+ equivalent to one of the unknot, the trefoil and its mirror.

The nu+ equivalence is an equivalence relation on the knot concordance group. Hom proves that many concordance invariants derived from Heegaard Floer homology are invariant under nu+ equivalence. In this work, we introduce a partial order on nu+ equivalence classes, and study its algebraic and geometrical properties. As an application, we prove that any genus one knot is nu+ equivalent to one of the unknot, the trefoil and its mirror.

### 2018/05/22

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

An analytic index theory for infinite-dimensional manifolds and KK-theory (JAPANESE)

**Doman Takata**(The university of Tokyo)An analytic index theory for infinite-dimensional manifolds and KK-theory (JAPANESE)

[ Abstract ]

The Atiyah-Singer index theorem is one of the monumental works in geometry and topology, which states the coincidence between analytic index and topological index on closed manifolds. The overall goal of my research is to formulate and prove an infinite dimensional version of this theorem. For this purpose, it is natural to begin with simple cases, and my current problem is the following: For infinite-dimensional manifolds equipped with a "proper and cocompact" action of the loop group of the circle, construct a loop group equivariant index theory, from the viewpoint of KK-theory. Although this project has not been completed, I have constructed several core objects for the analytic side of this problem, including a Hilbert space regarded as an "$L^2$-space", in arXiv:1701.06055 and arXiv:1709.06205. In this talk, I am going to report the progress so far.

The Atiyah-Singer index theorem is one of the monumental works in geometry and topology, which states the coincidence between analytic index and topological index on closed manifolds. The overall goal of my research is to formulate and prove an infinite dimensional version of this theorem. For this purpose, it is natural to begin with simple cases, and my current problem is the following: For infinite-dimensional manifolds equipped with a "proper and cocompact" action of the loop group of the circle, construct a loop group equivariant index theory, from the viewpoint of KK-theory. Although this project has not been completed, I have constructed several core objects for the analytic side of this problem, including a Hilbert space regarded as an "$L^2$-space", in arXiv:1701.06055 and arXiv:1709.06205. In this talk, I am going to report the progress so far.

### 2018/05/15

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

On the singularity theory of mixed hypersurfaces and some conjecture (JAPANESE)

**Mutsuo Oka**(Tokyo University of Science)On the singularity theory of mixed hypersurfaces and some conjecture (JAPANESE)

[ Abstract ]

Consider a real algebraic variety of real codimension 2 defined by $V:=\{g(\mathbf x,\mathbf y)=h(\mathbf x,\mathbf y)=0\}$ in $\mathbb C^n=\mathbb R^n\times \mathbb R^n$. Put $\mathbf z=\mathbf x+i\mathbf y$ and consider complex valued real analytic function $f=g+ih$. Replace the variables $x_1,y_1\dots, x_n,y_n$ using the equality $x_j=(z_j+\bar z_j)/2,\, y_j=(z_j-\bar z_j)/2i$. Then $f$ can be understood to be an analytic functions of $z_j,\bar z_j$. We call $f$ a mixed function. In this way, $V=\{f(\mathbf z,\bar{\mathbf z})=0\}$ and we can use the techniques of complex analytic functions and the singularity theory developed there. In this talk, we explain basic properties of the singularity of mixed hyper surface $V(f)$ and give several open questions.

Consider a real algebraic variety of real codimension 2 defined by $V:=\{g(\mathbf x,\mathbf y)=h(\mathbf x,\mathbf y)=0\}$ in $\mathbb C^n=\mathbb R^n\times \mathbb R^n$. Put $\mathbf z=\mathbf x+i\mathbf y$ and consider complex valued real analytic function $f=g+ih$. Replace the variables $x_1,y_1\dots, x_n,y_n$ using the equality $x_j=(z_j+\bar z_j)/2,\, y_j=(z_j-\bar z_j)/2i$. Then $f$ can be understood to be an analytic functions of $z_j,\bar z_j$. We call $f$ a mixed function. In this way, $V=\{f(\mathbf z,\bar{\mathbf z})=0\}$ and we can use the techniques of complex analytic functions and the singularity theory developed there. In this talk, we explain basic properties of the singularity of mixed hyper surface $V(f)$ and give several open questions.

### 2018/05/08

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Beyond the Weinstein conjecture (ENGLISH)

**Dan Cristofaro-Gardiner**(University of California, Santa Cruz)Beyond the Weinstein conjecture (ENGLISH)

[ Abstract ]

The Weinstein conjecture states that any Reeb vector field on a closed manifold has at least one closed orbit. The three-dimensional case of this conjecture was proved by Taubes in 2007, and Hutchings and I later showed that in this case there are always at least 2 orbits. While examples exist with exactly two orbits, one expects that this lower bound can be significantly improved with additional assumptions. For example, a theorem of Hofer, Wysocki, and Zehnder states that a generic nondegenerate Reeb vector field associated to the "standard" contact structure on $S^3$ has either 2, or infinitely many, closed orbits. We prove that any nondegenerate Reeb vector field has 2 or infinitely many closed orbits as long as the associated contact structure has torsion first Chern class. This is joint work with Mike Hutchings and Dan Pomerleano.

The Weinstein conjecture states that any Reeb vector field on a closed manifold has at least one closed orbit. The three-dimensional case of this conjecture was proved by Taubes in 2007, and Hutchings and I later showed that in this case there are always at least 2 orbits. While examples exist with exactly two orbits, one expects that this lower bound can be significantly improved with additional assumptions. For example, a theorem of Hofer, Wysocki, and Zehnder states that a generic nondegenerate Reeb vector field associated to the "standard" contact structure on $S^3$ has either 2, or infinitely many, closed orbits. We prove that any nondegenerate Reeb vector field has 2 or infinitely many closed orbits as long as the associated contact structure has torsion first Chern class. This is joint work with Mike Hutchings and Dan Pomerleano.

### 2018/04/24

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Singular Fibers of smooth maps and Cobordism groups (JAPANESE)

**Takahiro Yamamoto**(Tokyo Gakugei University)Singular Fibers of smooth maps and Cobordism groups (JAPANESE)

[ Abstract ]

Following the pioneering work of R.Thom, cobordism groups of smooth maps have been studied by some mathematicians. Especially, cobordism groups of Morse functions on closed manifolds was studied by O.Saeki and K.Ikegami, B.Kalmar. In this talk, we will introduce cobordism groups among Morse functions on compact manifolds with boundary and study the cobordism groups are trivial or not by using the theory of the universal complex of singular fibers of smooth maps.

Following the pioneering work of R.Thom, cobordism groups of smooth maps have been studied by some mathematicians. Especially, cobordism groups of Morse functions on closed manifolds was studied by O.Saeki and K.Ikegami, B.Kalmar. In this talk, we will introduce cobordism groups among Morse functions on compact manifolds with boundary and study the cobordism groups are trivial or not by using the theory of the universal complex of singular fibers of smooth maps.

### 2018/04/17

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Tight contact structures on Seifert surface complements and knot invariants (ENGLISH)

**Tamás Kálmán**(Tokyo Institute of Technology)Tight contact structures on Seifert surface complements and knot invariants (ENGLISH)

[ Abstract ]

In joint work with Daniel Mathews, we examined complements of standard Seifert surfaces of special alternating links and used Honda's method to enumerate those tight contact structures on them whose dividing sets are isotopic to the link. The number turns out to be the leading coefficient of the Alexander polynomial. The proof is rather combinatorial in nature; for example, the Euler classes of the contact structures are identified with `hypertrees' in a certain hypergraph. Using earlier results with Hitoshi Murakami and Alexander Postnikov, this yields a connection between contact topology and the Homfly polynomial. We also found that the contact invariants of our structures form a basis for the sutured Floer homology of the manifold.

In joint work with Daniel Mathews, we examined complements of standard Seifert surfaces of special alternating links and used Honda's method to enumerate those tight contact structures on them whose dividing sets are isotopic to the link. The number turns out to be the leading coefficient of the Alexander polynomial. The proof is rather combinatorial in nature; for example, the Euler classes of the contact structures are identified with `hypertrees' in a certain hypergraph. Using earlier results with Hitoshi Murakami and Alexander Postnikov, this yields a connection between contact topology and the Homfly polynomial. We also found that the contact invariants of our structures form a basis for the sutured Floer homology of the manifold.

### 2018/04/10

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

On the Morse-Novikov number for 2-knots (JAPANESE)

**Hisaaki Endo**(Tokyo Institute of Technology)On the Morse-Novikov number for 2-knots (JAPANESE)

[ Abstract ]

Pajitnov, Rudolph and Weber defined the Morse-Novikov number for classical links and studied their undamental properties in 2001. This invariant has been investigated in relation to (twisted) Alexander polynomials and the (twisted) Novikov homology. In this talk, we define the Morse-Novikov number for 2-knots and show its several properties. In particular, we describe its relations to motion pictures and spin constructions for 2-knots. This talk is based on joint works with Andrei Pajitnov (Nantes University).

Pajitnov, Rudolph and Weber defined the Morse-Novikov number for classical links and studied their undamental properties in 2001. This invariant has been investigated in relation to (twisted) Alexander polynomials and the (twisted) Novikov homology. In this talk, we define the Morse-Novikov number for 2-knots and show its several properties. In particular, we describe its relations to motion pictures and spin constructions for 2-knots. This talk is based on joint works with Andrei Pajitnov (Nantes University).

### 2018/04/03

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Chain level loop bracket and pseudo-holomorphic disks (JAPANESE)

**Kei Irie**(The University of Tokyo)Chain level loop bracket and pseudo-holomorphic disks (JAPANESE)

[ Abstract ]

Let $L$ be a Lagrangian submanifold in a symplectic vector space which is closed, oriented and spin. Using virtual fundamental chains of moduli spaces of nonconstant pseudo-holomorphic disks with boundaries on $L$, one can define a Maurer-Cartan element of a Lie bracket operation in string topology (the loop bracket) defined at chain level. This idea is due to Fukaya, who also pointed out its important consequences in symplectic topology. In this talk I will explain how to rigorously carry out this idea. Our argument is based on a string topology chain model previously introduced by the speaker, and theory of Kuranishi structures on moduli spaces of pseudo-holomorphic disks, which has been developed by Fukaya-Oh-Ohta-Ono.

Let $L$ be a Lagrangian submanifold in a symplectic vector space which is closed, oriented and spin. Using virtual fundamental chains of moduli spaces of nonconstant pseudo-holomorphic disks with boundaries on $L$, one can define a Maurer-Cartan element of a Lie bracket operation in string topology (the loop bracket) defined at chain level. This idea is due to Fukaya, who also pointed out its important consequences in symplectic topology. In this talk I will explain how to rigorously carry out this idea. Our argument is based on a string topology chain model previously introduced by the speaker, and theory of Kuranishi structures on moduli spaces of pseudo-holomorphic disks, which has been developed by Fukaya-Oh-Ohta-Ono.

### 2018/03/30

15:00-16:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Graph Complexes and the Kashiwara-Vergne Lie algebra (ENGLISH)

**Matteo Felder**(University of Geneva)Graph Complexes and the Kashiwara-Vergne Lie algebra (ENGLISH)

[ Abstract ]

The Kashiwara-Vergne Lie algebra krv was introduced by A. Alekseev and C. Torossian. It describes the symmetries of the Kashiwara-Vergne problem in Lie theory. It has been shown to contain the Grothendieck-Teichmüller Lie algebra grt as a Lie subalgebra. Conjecturally, these two Lie algebras are expected to be isomorphic. An important theorem by T. Willwacher states that in degree zero the cohomology of M. Kontsevich's graph complex GC is isomorphic to grt. We will show how T. Willwacher's result induces a natural way to define a nested sequence of Lie subalgebras of krv whose intersection is grt. This infinite family therefore interpolates between the two Lie algebras. For this we will recall several techniques from the theory of graph complexes. If time permits, we will then sketch how one might generalize these notions to establish a "genus one" analogue of T. Willwacher theorem. More precisely, we will define a chain complex whose degree zero cohomology is given by a Lie subalgebra of the elliptic Grothendieck-Teichmüller Lie algebra introduced by B. Enriquez. The last part is joint work in progress with T. Willwacher.

The Kashiwara-Vergne Lie algebra krv was introduced by A. Alekseev and C. Torossian. It describes the symmetries of the Kashiwara-Vergne problem in Lie theory. It has been shown to contain the Grothendieck-Teichmüller Lie algebra grt as a Lie subalgebra. Conjecturally, these two Lie algebras are expected to be isomorphic. An important theorem by T. Willwacher states that in degree zero the cohomology of M. Kontsevich's graph complex GC is isomorphic to grt. We will show how T. Willwacher's result induces a natural way to define a nested sequence of Lie subalgebras of krv whose intersection is grt. This infinite family therefore interpolates between the two Lie algebras. For this we will recall several techniques from the theory of graph complexes. If time permits, we will then sketch how one might generalize these notions to establish a "genus one" analogue of T. Willwacher theorem. More precisely, we will define a chain complex whose degree zero cohomology is given by a Lie subalgebra of the elliptic Grothendieck-Teichmüller Lie algebra introduced by B. Enriquez. The last part is joint work in progress with T. Willwacher.

### 2018/03/30

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Goldman-Turaev formality in genus 0 from the KZ connection (ENGLISH)

**Florian Naef**(Massachusetts Institute of Technology)Goldman-Turaev formality in genus 0 from the KZ connection (ENGLISH)

[ Abstract ]

Using the intersection and self-intersection of loops on a surface one can define the Goldman-Turaev Lie bialgebra. By earlier joint work with A. Alekseev, N. Kawazumi and Y. Kuno it is known that the linearization problem of the Goldman-Turaev Lie bialgebra is closely related to the Kashiwara-Vergne problem and hence to Drinfeld associators. It turns out that in the case of a genus 0 surface and over the field of complex numbers there is a very direct and explicit proof of the formality of the Goldman-Turaev Lie bialgebra using the monodromy of the Knizhnik-Zamolodchikov connection. This is joint work with Anton Alekseev.

Using the intersection and self-intersection of loops on a surface one can define the Goldman-Turaev Lie bialgebra. By earlier joint work with A. Alekseev, N. Kawazumi and Y. Kuno it is known that the linearization problem of the Goldman-Turaev Lie bialgebra is closely related to the Kashiwara-Vergne problem and hence to Drinfeld associators. It turns out that in the case of a genus 0 surface and over the field of complex numbers there is a very direct and explicit proof of the formality of the Goldman-Turaev Lie bialgebra using the monodromy of the Knizhnik-Zamolodchikov connection. This is joint work with Anton Alekseev.

### 2018/02/21

17:00-18:30 Room #122 (Graduate School of Math. Sci. Bldg.)

The category of bottom tangles in handlebodies, and the Kontsevich integral (ENGLISH)

**Gwénaël Massuyeau**(Université de Bourgogne)The category of bottom tangles in handlebodies, and the Kontsevich integral (ENGLISH)

[ Abstract ]

Habiro introduced the category B of « bottom tangles in handlebodies », which encapsulates the set of knots in the 3-sphere as well as the mapping class groups of 3-dimensional handlebodies. There is a natural filtration on the category B defined using an appropriate generalization of Vassiliev invariants. In this talk, we will show that the completion of B with respect to the Vassiliev filtration is isomorphic to a certain category A which can be defined either in a combinatorial way using « Jacobi diagrams », or by a universal property via the notion of « Casimir Hopf algebra ». Such an isomorphism will be obtained by extending the Kontsevich integral (originally defined as a knot invariant) to a functor Z from B to A. This functor Z can be regarded as a refinement of the TQFT-like functor derived from the LMO invariant and, if time allows, we will evoke the topological interpretation of the « tree-level » of Z. (This is based on joint works with Kazuo Habiro.)

Habiro introduced the category B of « bottom tangles in handlebodies », which encapsulates the set of knots in the 3-sphere as well as the mapping class groups of 3-dimensional handlebodies. There is a natural filtration on the category B defined using an appropriate generalization of Vassiliev invariants. In this talk, we will show that the completion of B with respect to the Vassiliev filtration is isomorphic to a certain category A which can be defined either in a combinatorial way using « Jacobi diagrams », or by a universal property via the notion of « Casimir Hopf algebra ». Such an isomorphism will be obtained by extending the Kontsevich integral (originally defined as a knot invariant) to a functor Z from B to A. This functor Z can be regarded as a refinement of the TQFT-like functor derived from the LMO invariant and, if time allows, we will evoke the topological interpretation of the « tree-level » of Z. (This is based on joint works with Kazuo Habiro.)

### 2018/01/30

17:00-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)

Persistence-like distance on Tamarkin's category and symplectic displacement energy (JAPANESE)

**Yuichi Ike**(The University of Tokyo)Persistence-like distance on Tamarkin's category and symplectic displacement energy (JAPANESE)

[ Abstract ]

The microlocal sheaf theory due to Kashiwara and Schapira can be regarded as Morse theory with sheaf coefficients. Recently it has been applied to symplectic geometry, after the pioneering work of Tamarkin. In this talk, I will propose a new sheaf-theoretic method to estimate the displacement energy of compact subsets in cotangent bundles. In the course of the proof, we introduce a persistence-like pseudo-distance on Tamarkin's sheaf category. This is a joint work with Tomohiro Asano.

The microlocal sheaf theory due to Kashiwara and Schapira can be regarded as Morse theory with sheaf coefficients. Recently it has been applied to symplectic geometry, after the pioneering work of Tamarkin. In this talk, I will propose a new sheaf-theoretic method to estimate the displacement energy of compact subsets in cotangent bundles. In the course of the proof, we introduce a persistence-like pseudo-distance on Tamarkin's sheaf category. This is a joint work with Tomohiro Asano.

### 2018/01/23

17:00-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)

An invariant of 3-manifolds via homology cobordisms (JAPANESE)

**Yuta Nozaki**(The University of Tokyo)An invariant of 3-manifolds via homology cobordisms (JAPANESE)

[ Abstract ]

For a closed 3-manifold X, we consider the topological invariant defined as the minimal integer g such that X is obtained as the closure of a homology cobordism over a surface of genus g. We prove that the invariant equals one for every lens space, which is contrast to the fact that some lens spaces do not admit any open book decomposition whose page is a surface of genus one. The proof is based on the Chebotarev density theorem and binary quadratic forms in number theory.

For a closed 3-manifold X, we consider the topological invariant defined as the minimal integer g such that X is obtained as the closure of a homology cobordism over a surface of genus g. We prove that the invariant equals one for every lens space, which is contrast to the fact that some lens spaces do not admit any open book decomposition whose page is a surface of genus one. The proof is based on the Chebotarev density theorem and binary quadratic forms in number theory.

### 2018/01/23

18:00-19:00 Room #056 (Graduate School of Math. Sci. Bldg.)

Wrapping projections and decompositions of Keinian groups (JAPANESE)

**Junha Tanaka**(The University of Tokyo)Wrapping projections and decompositions of Keinian groups (JAPANESE)

[ Abstract ]

Let $S$ be a closed surface of genus $g ¥geq 2$. The deformation space $AH(S)$ consists of (conjugacy classes of) discrete faithful representations $\rho:\pi_{1}(S) \to PSL_{2}(\mathbb{C})$.

McMullen, and Bromberg and Holt showed that $AH(S)$ can self-bump, that is, the interior of $AH(S)$ has the self-intersecting closure.

Both of them demonstrated the existence of self-bumping under the exisetence of a non-trivial wrapping projections from an algebraic limits to a geometric limits which wraps an annulus cusp into a torus cusp.

In this talk, given a representation $\rho$ at the boundary of $AH(S)$, we characterize a wrapping projection to a geometric limit associated to $\rho$, by the information of the actions of decomposed Kleinian groups of the image of $\rho$.

Let $S$ be a closed surface of genus $g ¥geq 2$. The deformation space $AH(S)$ consists of (conjugacy classes of) discrete faithful representations $\rho:\pi_{1}(S) \to PSL_{2}(\mathbb{C})$.

McMullen, and Bromberg and Holt showed that $AH(S)$ can self-bump, that is, the interior of $AH(S)$ has the self-intersecting closure.

Both of them demonstrated the existence of self-bumping under the exisetence of a non-trivial wrapping projections from an algebraic limits to a geometric limits which wraps an annulus cusp into a torus cusp.

In this talk, given a representation $\rho$ at the boundary of $AH(S)$, we characterize a wrapping projection to a geometric limit associated to $\rho$, by the information of the actions of decomposed Kleinian groups of the image of $\rho$.

### 2018/01/16

17:00-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)

On adequacy and the crossing number of satellite knots (JAPANESE)

**Jimenez Pascual Adrian**(The University of Tokyo)On adequacy and the crossing number of satellite knots (JAPANESE)

[ Abstract ]

It has always been difficult to prove results regarding the (minimal) crossing number of knots. In particular, apparently easy problems such as knowing the crossing number of the connected sum of knots, or bounding the crossing number of satellite knots have been conjectured through decades, yet still remain open. Focusing on this latter problem, in this talk I will prove that the crossing number of a satellite knot is bounded from below by the crossing number of its companion, when the companion is adequate.

It has always been difficult to prove results regarding the (minimal) crossing number of knots. In particular, apparently easy problems such as knowing the crossing number of the connected sum of knots, or bounding the crossing number of satellite knots have been conjectured through decades, yet still remain open. Focusing on this latter problem, in this talk I will prove that the crossing number of a satellite knot is bounded from below by the crossing number of its companion, when the companion is adequate.

### 2018/01/16

18:00-19:00 Room #056 (Graduate School of Math. Sci. Bldg.)

A new relationship between the dilatation of pseudo-Anosov braids and fixed point theory (JAPANESE)

**Yumehito Kawashima**(The University of Tokyo)A new relationship between the dilatation of pseudo-Anosov braids and fixed point theory (JAPANESE)

[ Abstract ]

A relation between the dilatation of pseudo-Anosov braids and fixed point theory was studied by Ivanov. In this talk we reveal a new relationship between the above two subjects by showing a formula for the dilatation of pseudo-Anosov braids by means of the representations of braid groups due to B. Jiang and H. Zheng.

A relation between the dilatation of pseudo-Anosov braids and fixed point theory was studied by Ivanov. In this talk we reveal a new relationship between the above two subjects by showing a formula for the dilatation of pseudo-Anosov braids by means of the representations of braid groups due to B. Jiang and H. Zheng.

### 2017/12/19

17:30-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Deformation of holomorphic quadratic differentials and its applications (JAPANESE)

**Hideki Miyachi**(Osaka university)Deformation of holomorphic quadratic differentials and its applications (JAPANESE)

[ Abstract ]

Quadratic differentials are standard and important objects in Teichmuller theory. The deformation space (moduli space) of the quadratic differentials is applied to many fields of mathematics. In this talk, I will develop the deformation of quadratic differentials. Indeed, following pioneer works by A. Douady, J. Hubbard, H. Masur and W. Veech, we describe the infinitesimal deformations in the odd (co)homology groups on the double covering spaces defined from the square roots of the quadratic differentials. We formulate the decomposition theorem for the infinitesimal deformations with keeping in mind of the induced deformation of the moduli of underlying complex structures. As applications, we obtain the Levi form of the Teichmuller distance, and an alternate proof of the Krushkal formula on the pluricomplex Green function on the Teichmuller space.

Quadratic differentials are standard and important objects in Teichmuller theory. The deformation space (moduli space) of the quadratic differentials is applied to many fields of mathematics. In this talk, I will develop the deformation of quadratic differentials. Indeed, following pioneer works by A. Douady, J. Hubbard, H. Masur and W. Veech, we describe the infinitesimal deformations in the odd (co)homology groups on the double covering spaces defined from the square roots of the quadratic differentials. We formulate the decomposition theorem for the infinitesimal deformations with keeping in mind of the induced deformation of the moduli of underlying complex structures. As applications, we obtain the Levi form of the Teichmuller distance, and an alternate proof of the Krushkal formula on the pluricomplex Green function on the Teichmuller space.

### 2017/12/12

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

On the self-intersection of singular sets of maps and the signature defect (JAPANESE)

**Tatsuro Shimizu**(RIMS, Kyoto university)On the self-intersection of singular sets of maps and the signature defect (JAPANESE)

[ Abstract ]

Let $M$ be a closed oriented $n$-dimensional manifold. We give a geometric proof of that the $k$-times self-intersection of singular set of a Morin map from $M$ to $R^p$ coincides with the corank $k$ singular set of any generic map from $M$ to $R^{p+k-1}$ as homology classes with $Z/2$ coefficient ($n>p+k-2$). As an application we give a description of the signature defect of framed 3-manifold from the point of view of singular sets of maps.

Let $M$ be a closed oriented $n$-dimensional manifold. We give a geometric proof of that the $k$-times self-intersection of singular set of a Morin map from $M$ to $R^p$ coincides with the corank $k$ singular set of any generic map from $M$ to $R^{p+k-1}$ as homology classes with $Z/2$ coefficient ($n>p+k-2$). As an application we give a description of the signature defect of framed 3-manifold from the point of view of singular sets of maps.

### 2017/12/05

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Derivations and cohomologies of Lipschitz algebras (JAPANESE)

**Kazuhiro Kawamura**(University of Tsukuba)Derivations and cohomologies of Lipschitz algebras (JAPANESE)

[ Abstract ]

For a compact metric space M, Lip(M) denotes the Banach algebra of all complex-valued Lipschitz functions on M. Motivated by a classical work of de Leeuw, we define a compact, not necessarily metrizable, Hausdorff space \hat{M} so that each point of \hat{M} induces a derivation on Lip(M). To some extent, \hat{M} may be regarded as "the space of directions." We study, by an elementary method, the space of derivations and continuous Hochschild cohomologies (in the sense of B.E. Johnson and A.Y. Helemskii) of Lip(M) with coefficients C(\hat{M}) and C(M). The results so obtained show that the behavior of Lip(M) is (naturally) rather different than that of the algebra of smooth/C^1 functions on M.

For a compact metric space M, Lip(M) denotes the Banach algebra of all complex-valued Lipschitz functions on M. Motivated by a classical work of de Leeuw, we define a compact, not necessarily metrizable, Hausdorff space \hat{M} so that each point of \hat{M} induces a derivation on Lip(M). To some extent, \hat{M} may be regarded as "the space of directions." We study, by an elementary method, the space of derivations and continuous Hochschild cohomologies (in the sense of B.E. Johnson and A.Y. Helemskii) of Lip(M) with coefficients C(\hat{M}) and C(M). The results so obtained show that the behavior of Lip(M) is (naturally) rather different than that of the algebra of smooth/C^1 functions on M.

### 2017/11/28

17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)

Diffeomorphism Groups of One-Manifolds (ENGLISH)

**Sang-hyun Kim**(Seoul National University)Diffeomorphism Groups of One-Manifolds (ENGLISH)

[ Abstract ]

Let a>=2 be a real number and k = [a]. We denote by Diff^a(S^1) the group of C^k diffeomorphisms such that the k--th derivatives are Hölder--continuous of exponent (a - k). For each real number a>=2, we prove that there exists a finitely generated group G < Diff^a(S^1) such that G admits no injective homomorphisms into Diff^b(S^1) for any b>a. This is joint work with Thomas Koberda.

Let a>=2 be a real number and k = [a]. We denote by Diff^a(S^1) the group of C^k diffeomorphisms such that the k--th derivatives are Hölder--continuous of exponent (a - k). For each real number a>=2, we prove that there exists a finitely generated group G < Diff^a(S^1) such that G admits no injective homomorphisms into Diff^b(S^1) for any b>a. This is joint work with Thomas Koberda.