Tuesday Seminar on Topology

Seminar information archive ~09/17Next seminarFuture seminars 09/18~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KOHNO Toshitake, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya
Remarks Tea: 16:30 - 17:00 Common Room

Seminar information archive


17:00-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Ken'ichi Ohshika (Osaka University)
Characterising bumping points on deformation spaces of Kleinian groups (JAPANESE)
[ Abstract ]
It is known that components of the interior of a deformation space of a Kleinian group can bump, and a component of the interior can bump itself, on the boundary of the deformation space.
Anderson-Canary-McCullogh gave a necessary and sufficient condition for two components to bump.
In this talk, I shall give a criterion for points on the boundary to be bumping points.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Daniel Ruberman (Brandeis University)
Periodic-end manifolds and SW theory (ENGLISH)
[ Abstract ]
We study an extension of Seiberg-Witten invariants to
4-manifolds with the homology of S^1 \\times S^3. This extension has
many potential applications in low-dimensional topology, including the
study of the homology cobordism group. Because b_2^+ =0, the usual
strategy for defining invariants does not work--one cannot disregard
reducible solutions. In fact, the count of solutions can jump in a
family of metrics or perturbations. To remedy this, we define an
index-theoretic counter-term that jumps by the same amount. The
counterterm is the index of the Dirac operator on a manifold with a
periodic end modeled at infinity by the infinite cyclic cover of the
manifold. This is joint work with Tomasz Mrowka and Nikolai Saveliev.


17:00-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Kazuo Habiro (RIMS, Kyoto University)
Quantum fundamental groups and quantum representation varieties for 3-manifolds (JAPANESE)
[ Abstract ]
We define a refinement of the fundamental groups of 3-manifolds and
a generalization of representation variety of the fundamental group
of 3-manifolds. We consider the category $H$ whose morphisms are
nonnegative integers, where $n$ corresponds to a genus $n$ handlebody
equipped with an embedding of a disc into the boundary, and whose
morphisms are the isotopy classes of embeddings of handlebodies
compatible with the embeddings of the disc into the boundaries. For
each 3-manifold $M$ with an embedding of a disc into the boundary, we
can construct a contravariant functor from $H$ to the category of
sets, where the object $n$ of $H$ is mapped to the set of isotopy
classes of embedding of the genus $n$ handlebody into $M$, compatible
with the embeddings of the disc into the boundaries. This functor can
be regarded as a refinement of the fundamental group of $M$, and we
call it the quantum fundamental group of $M$. Using this invariant, we
can construct for each co-ribbon Hopf algebra $A$ an invariant of
3-manifolds which may be regarded as (the space of regular functions
on) the representation variety of $M$ with respect to $A$.


16:30-18:00   Room #002 (Graduate School of Math. Sci. Bldg.)
Jinseok Cho (Waseda University)
Optimistic limits of colored Jones invariants (ENGLISH)
[ Abstract ]
Yokota made a wonderful theory on the optimistic limit of Kashaev
invariant of a hyperbolic knot
that the limit determines the hyperbolic volume and the Chern-Simons
invariant of the knot.
Especially, his theory enables us to calculate the volume of a knot
combinatorially from its diagram for many cases.

We will briefly discuss Yokota theory, and then move to the optimistic
limit of colored Jones invariant.
We will explain a parallel version of Yokota theory based on the
optimistic limit of colored Jones invariant.
Especially, we will show the optimistic limit of colored Jones
invariant coincides with that of Kashaev invariant modulo 2\\pi^2.
This implies the optimistic limit of colored Jones invariant also
determines the volume and Chern-Simons invariant of the knot, and
probably more information.

This is a joint-work with Jun Murakami of Waseda University.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Andrei Pajitnov (Univ. de Nantes, The University of Tokyo)
Asymptotics of Morse numbers of finite coverings of manifolds (ENGLISH)
[ Abstract ]
Let X be a closed manifold;
denote by m(X) the Morse number of X
(that is, the minimal number of critical
points of a Morse function on X).
Let Y be a finite covering of X of degree d.

In this survey talk we will address the following question
posed by M. Gromov: What are the asymptotic properties
of m(N) as d goes to infinity?

It turns out that for high-dimensional manifolds with
free abelian fundamental group the asymptotics of
the number m(N)/d is directly related to the Novikov homology
of N. We prove this theorem and discuss related results.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Ayumu Inoue (Tokyo Institute of Technology)
Quandle homology and complex volume
(Joint work with Yuichi Kabaya) (JAPANESE)
[ Abstract ]
For a hyperbolic 3-manifold M, the complex value (Vol(M) + i CS(M)) is called the complex volume of M. Here, Vol(M) denotes the volume of M, and CS(M) the Chern-Simons invariant of M.
In 2004, Neumann defined the extended Bloch group, and showed that there is an element of the extended Bloch group corresponding to a hyperbolic 3-manifold.
He further showed that we can compute the complex volume of the manifold by evaluating the element of the extended Bloch group.
To obtain an element of the extended Bloch group corresponding to a hyperbolic 3-manifold, we have to find an ideal triangulation of the manifold and to solve several equations.
On the other hand, we show that the element of the extended Bloch group corresponding to the exterior of a hyperbolic link is obtained from a quandle shadow coloring.
It means that we can compute the complex volume combinatorially from a link diagram.


17:00-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Keiko Kawamuro (University of Iowa)
A polynomial invariant of pseudo-Anosov maps (JAPANESE)
[ Abstract ]
Thurston-Nielsen classified surface homomorphism into three classes. Among them, the pseudo-Anosov class is the most interesting since there is strong connection to the hyperbolic manifolds. As an invariant, the dilatation number has been known. In this talk, I will introduce a new invariant of pseudo-Anosov maps. It is an integer coefficient polynomial, which contains the dilatation as the largest real root and is often reducible. I will show properties of the polynomials, examples, and some application to knot theory. (This is a joint work with Joan Birman and Peter Brinkmann.)


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Marion Moore (University of California, Davis)
High Distance Knots in closed 3-manifolds (ENGLISH)
[ Abstract ]
Let M be a closed 3-manifold with a given Heegaard splitting.
We show that after a single stabilization, some core of the
stabilized splitting has arbitrarily high distance with respect
to the splitting surface. This generalizes a result of Minsky,
Moriah, and Schleimer for knots in S^3. We also show that in the
complex of curves, handlebody sets are either coarsely distinct
or identical. We define the coarse mapping class group of a
Heeegaard splitting, and show that if (S,V,W) is a Heegaard
splitting of genus greater than or equal to 2, then the coarse
mapping class group of (S,V,W) is isomorphic to the mapping class
group of (S, V, W). This is joint work with Matt Rathbun.


17:00-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Akira Kono (Kyoto University)
On the cohomology of free and twisted loop spaces (JAPANESE)
[ Abstract ]
A natural extension of cohomology suspension to a free loop space is
constructed from the evaluation map and is shown to have a good
properties in cohomology calculation. This map is generalized to a
twisted loop space.
As an application, the cohomology of free and twisted loop space of
classifying spaces of compact Lie groups, including certain finite
Chevalley groups is calculated.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Takahiro Kitayama (The University of Tokyo)
Non-commutative Reidemeister torsion and Morse-Novikov theory (JAPANESE)
[ Abstract ]
For a circle-valued Morse function of a closed oriented manifold, we
show that Reidemeister torsion over a non-commutative formal Laurent
polynomial ring equals the product of a certain non-commutative
Lefschetz-type zeta function and the algebraic torsion of the Novikov
complex over the ring. This gives a generalization of the results of
Hutchings-Lee and Pazhitnov on abelian coefficients. As a consequence we
obtain Morse theoretical and dynamical descriptions of the higher-order
Alexander polynomials.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Kazuhiro Ichihara (Nihon University)
On exceptional surgeries on Montesinos knots
(joint works with In Dae Jong and Shigeru Mizushima) (JAPANESE)
[ Abstract ]
I will report recent progresses of the study on exceptional
surgeries on Montesinos knots.
In particular, we will focus on how homological invariants (e.g.
khovanov homology,
knot Floer homology) on knots can be used in the study of Dehn surgery.


17:00-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Taro Asuke (The University of Tokyo)
On Fatou-Julia decompositions (JAPANESE)
[ Abstract ]
We will explain that Fatou-Julia decompositions can be
introduced in a unified manner to several kinds of one-dimensional
complex dynamical systems, which include the action of Kleinian groups,
iteration of holomorphic mappings and complex codimension-one foliations.
In this talk we will restrict ourselves mostly to the cases where the
dynamical systems have a certain compactness, however, we will mention
how to deal with dynamical systems without compactness.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Naoyuki Monden (Osaka University)
On roots of Dehn twists (JAPANESE)
[ Abstract ]
Let $t_{c}$ be the Dehn twist about a nonseparating simple closed curve
$c$ in a closed orientable surface. If a mapping class $f$ satisfies
$t_{c}=f^{n}$ in mapping class group, we call $f$ a root of $t_{c}$ of
degree $n$. In 2009, Margalit and Schleimer constructed roots of $t_{c}$.
In this talk, I will explain the data set which determine a root of
$t_{c}$ up to conjugacy. Moreover, I will explain the minimal and the
maximal degree.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Nariya Kawazumi (The University of Tokyo)
The logarithms of Dehn twists (JAPANESE)
[ Abstract ]
We establish an explicit formula for the action of (non-separating and
separating) Dehn twists on the complete group ring of the fundamental group of a
surface. It generalizes the classical transvection formula on the first homology.
The proof is involved with a homological interpretation of the Goldman
Lie algebra. This talk is based on a jointwork with Yusuke Kuno (Hiroshima U./JSPS).


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
横田 佳之 (首都大学東京)
On the complex volume of hyperbolic knots (JAPANESE)
[ Abstract ]
In this talk, we give a formula of the volume and the Chern-Simons invariant of hyperbolic knot complements, which is closely related to the volume conjecture of hyperbolic knots.
We also discuss the volumes and the Chern-Simons invariants of closed 3-manifolds
obtained by Dehn surgeries on hyperbolic knots.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Helene Eynard-Bontemps (東京大学大学院数理科学研究科, JSPS)
Homotopy of foliations in dimension 3. (ENGLISH)
[ Abstract ]
We are interested in the connectedness of the space of
codimension one foliations on a closed 3-manifold. In 1969, J. Wood proved
the fundamental result:

Theorem: Every 2-plane field on a closed 3-manifold is homotopic to a

W. R. gave a new proof of (and generalized) this result in 1973 using
local constructions. It is then natural to wonder if two foliations with
homotopic tangent plane fields can be linked by a continuous path of
A. Larcanch\\'e gave a positive answer in the particular case of
"sufficiently close" taut foliations. We use the key construction of her
proof (among other tools) to show that this is actually always true,
provided one is not too picky about the regularity of the foliations of
the path:

Theorem: Two C^\\infty foliations with homotopic tangent plane fields can
be linked by a path of C^1 foliations.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Christian Kassel (CNRS, Univ. de Strasbourg)
Torsors in non-commutative geometry (ENGLISH)
[ Abstract ]
G-torsors or principal homogeneous spaces are familiar objects in geometry. I'll present an extension of such objects to "non-commutative geometry". When the structural group G is finite, non-commutative G-torsors are governed by a group that has both an arithmetic component and a geometric one. The arithmetic part is given by a classical Galois cohomology group; the geometric input is encoded in a (not necessarily abelian) group that takes into account all normal abelian subgroups of G of central type. Various examples will be exhibited.


17:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Dieter Kotschick (Univ. M\"unchen)
Characteristic numbers of algebraic varieties
[ Abstract ]
The Chern numbers of n-dimensional smooth projective varieties span a vector space whose dimension is the number of partitions of n. This vector space has many natural subspaces, some of which are quite small, for example the subspace spanned by Hirzebruch--Todd numbers, the subspace of topologically invariant combinations of Chern numbers, the subspace determined by the Hodge numbers, and the subspace of Chern numbers that can be bounded in terms of Betti numbers. I shall explain the relation between these subspaces, and characterize them in several ways. This leads in particular to the solution of a long-standing open problem originally formulated by Hirzebruch in the 1950s.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
Fanny Kassel (Univ. Paris-Sud, Orsay)
Deformation of compact quotients of homogeneous spaces
[ Abstract ]
Let G/H be a reductive homogeneous space. In all known examples, if
G/H admits compact Clifford-Klein forms, then it admits "standard"
ones, by uniform lattices of some reductive subgroup L of G acting
properly on G/H. In order to obtain more generic Clifford-Klein forms,
we prove that for L of real rank 1, if one slightly deforms in G a
uniform lattice of L, then its action on G/H remains properly
discontinuous. As an application, we obtain compact quotients of
SO(2,2n)/U(1,n) by Zariski-dense discrete subgroups of SO(2,2n) acting
properly discontinuously.


17:00-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
栗林 勝彦 (信州大学)
On the (co)chain type levels of spaces
[ Abstract ]
Avramov, Buchweitz, Iyengar and Miller have introduced
the notion of the level for an object of a triangulated category.
The invariant measures the number of steps to build the given object
out of some fixed object with triangles.
Using this notion in the derived category of modules over a (co)chain
we define a new topological invariant, which is called
the (co)chain type level of a space.
In this talk, after explaining fundamental properties of the invariant,
I describe the chain type level of the Borel construction
of a homogeneous space as a computational example.

I will also relate the chain type level of a space to algebraic
approximations of the L.-S. category due to Kahl and to
the original L.-S. category of a map.


17:00-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
小林 亮一 (名古屋大学)
Localization via group action and its application to
the period condition of algebraic minimal surfaces
[ Abstract ]
The optimal estimate for the number of exceptional
values of the Gauss map of algebraic minimal surfaces is a long
standing problem. In this lecture, I will introduce new ideas
toward the solution of this problem. The ``collective Cohn-Vossen
inequality" is the key idea. From this we have effective
Nevanlinna's lemma on logarithmic derivative for a certain class
of meromorphic functions on the disk. On the other hand, we can
construct a family holomorphic functions on the disk from the
Weierstrass data of the algebraic minimal surface under
consideration, which encodes the period condition.
Applying effective Lemma on logarithmic derivative to these
functions, we can extract an intriguing inequality.


16:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
篠原 克寿 (東京大学大学院数理科学研究科) 16:30-17:30
Index problem for generically-wild homoclinic classes in dimension three
[ Abstract ]
In the sphere of non-hyperbolic differentiable dynamical systems, one can construct an example of a homolinic class which does not admit any kind of dominated splittings (a weak form of hyperbolicity) in a robust way. In this talk, we discuss the index (dimension of the unstable manifold) of the periodic points inside such homoclinic classes from a $C^1$-generic viewpoint.
二木 昌宏 (東京大学大学院数理科学研究科) 17:30-18:30
On a generalized suspension theorem for directed Fukaya categories
[ Abstract ]
The directed Fukaya category $\\mathrm{Fuk} W$ of exact Lefschetz
fibration $W : X \\to \\mathbb{C}$ proposed by Kontsevich is a
categorification of the Milnor lattice of $W$. This is defined as the
directed $A_\\infty$-category $\\mathrm{Fuk} W = \\mathrm{Fuk}^\\to
\\mathbb{V}$ generated by a distinguished basis $\\mathbb{V}$ of
vanishing cycles.

Recently Seidel has proved that this is stable under the suspension $W
+ u^2$ as a consequence of his foundational work on the directed
Fukaya category. We generalize his suspension theorem to the $W + u^d$
case by considering partial tensor product $\\mathrm{Fuk} W \\otimes'
\\mathcal{A}_{d-1}$, where $\\mathcal{A}_{d-1}$ is the category
corresponding to the $A_n$-type quiver. This also generalizes a recent
work by the author with Kazushi Ueda.


16:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
服部 広大 (東京大学大学院数理科学研究科) 16:30-17:30
The volume growth of hyperkaehler manifolds of type $A_{\\infty}$
[ Abstract ]
Hyperkaehler manifolds of type $A_{\\infty}$ were constructed due to Anderson-Kronheimer-LeBrun and Goto. These manifolds are 4-demensional, noncompact and their homology groups are infinitely generated. We focus on the volume growth of these hyperkaehler metrics. Here, the volume growth is asymptotic behavior of the volume of a ball of radius $r0$ with the center fixed. There are known examples of hyperkaehler manifolds whose volume growth is $r^4$ (ALE space) or $r^3$ (Taub-NUT space). In this talk we show that there exists a hyperkaehler manifold of type $A_{\\infty}$ whose volume growth is $r^c$ for a given $3 松尾 信一郎 (東京大学大学院数理科学研究科) 17:30-18:30
On the Runge theorem for instantons
[ Abstract ]
A classical theorem of Runge in complex analysis asserts that a
meromorphic function on a domain in the Riemann sphere can be
approximated, over compact subsets, by rational functions, that is,
meromorphic functions on the Riemann sphere.
This theorem can be paraphrased by saying that any solution of the
Cauchy-Riemann equations on a domain in the Riemann sphere can be
approximated, over compact subsets, by global solutions.
In this talk we will present an analogous result in which the
Cauchy-Riemann equations on Riemann surfaces are replaced by the
Yang-Mills instanton equations on oriented 4-manifolds.
We will also mention that the Runge theorem for instantons can be
applied to develop Yang-Mills gauge theory on open 4-manifolds.


16:30-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
寺杣 友秀 (東京大学大学院数理科学研究科)
Relative DG-category, mixed elliptic motives and elliptic polylog
[ Abstract ]
We consider a full subcategory of
mixed motives generated by an elliptic curve
over a field, which is called the category of
mixed elliptic motives. We introduce a DG
Hopf algebra such that the categroy of
mixed elliptic motives is equal to that of
comodules over it. For the construction, we
use the notion of relative DG-category with
respect to GL(2). As an application, we construct
an mixed elliptic motif associated to
the elliptic polylog. It is a joint work with
Kenichiro Kimura.


17:00-18:00   Room #056 (Graduate School of Math. Sci. Bldg.)
砂田 利一 (明治大学)
Open Problems in Discrete Geometric Analysis
[ Abstract ]
Discrete geometric analysis is a hybrid field of several traditional disciplines: graph theory, geometry, theory of discrete groups, and probability. This field concerns solely analysis on graphs, a synonym of "1-dimensional cell complex". In this talk, I shall discuss several open problems related to the discrete Laplacian, a "protagonist" in discrete geometric analysis. Topics dealt with are 1. Ramanujan graphs, 2. Spectra of covering graphs, 3. Zeta functions of finitely generated groups.

< Previous 1234567891011121314151617 Next >