PDE Real Analysis Seminar
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Tuesday 10:30 - 11:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Yoshikazu Giga, Kazuhiro Ishige, Hiroyoshi Mitake, Tsuyoshi Yoneda |
URL | https://www.math.sci.hokudai.ac.jp/coe/sympo/pde_ra/index_en.html |
2012/11/21
10:30-11:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Giovanni Pisante (Seconda Università degli Studi di Napoli)
Shape Optimization And Asymptotic For The Twisted Dirichlet Eigenvalue (ENGLISH)
Giovanni Pisante (Seconda Università degli Studi di Napoli)
Shape Optimization And Asymptotic For The Twisted Dirichlet Eigenvalue (ENGLISH)
[ Abstract ]
Aim of the talk is to discuss some recent results obtained with G. Croce and A. Henrot on a generalization of the functional defining the first twisted eigenvalue.
We look at the set functional defined by minimizing a Rayleigh quotient involving Lebesgue norms with different exponents p and q among functions satisfying a zero boundary condition as well as a zero mean condition of order q.
First under suitable conditions on p and q, that ensure the existence of a minimizing function, we investigate the validity of an isoperimetric type inequality of the Reyleigh-Faber-Krahn type.
Then we study the limit of the functional for p and q tending to 1 and to infinity and discuss the relation with the limits of the second eigenvalues of the p-laplacian operator.
Aim of the talk is to discuss some recent results obtained with G. Croce and A. Henrot on a generalization of the functional defining the first twisted eigenvalue.
We look at the set functional defined by minimizing a Rayleigh quotient involving Lebesgue norms with different exponents p and q among functions satisfying a zero boundary condition as well as a zero mean condition of order q.
First under suitable conditions on p and q, that ensure the existence of a minimizing function, we investigate the validity of an isoperimetric type inequality of the Reyleigh-Faber-Krahn type.
Then we study the limit of the functional for p and q tending to 1 and to infinity and discuss the relation with the limits of the second eigenvalues of the p-laplacian operator.