Number Theory Seminar

Seminar information archive ~05/01Next seminarFuture seminars 05/02~

Date, time & place Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Naoki Imai, Shane Kelly

2024/12/11

17:00-18:00   Room #117 (Graduate School of Math. Sci. Bldg.)
Ryosuke Ooe (University of Tokyo)
The characteristic cycle of an l-adic sheaf on a smooth variety (Japanese)
[ Abstract ]
The characteristic cycle of an l-adic sheaf on a smooth variety over a perfect field is defined by Saito as a cycle on the cotangent bundle and the intersection with the zero section computes the Euler number. On the other hand, the characteristic cycle of an l-adic sheaf on a regular scheme in mixed characteristic is not yet defined. In this talk, I define the F-characteristic cycle of a rank one sheaf on an arithmetic surface whose intersection with the zero section computes the Swan conductor of the cohomology of the generic fiber. The definition is based on the computation of the characteristic cycle in equal characteristic by Yatagawa. I explain the rationality and the integrality of the characteristic form of an abelian character, which are necessary for the definition of the F-characteristic cycle.