Number Theory Seminar
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Naoki Imai, Shane Kelly |
2024/06/19
17:00-18:00 Room #117 (Graduate School of Math. Sci. Bldg.)
Abhinandan (University of Tokyo)
Prismatic $F$-crystals and Wach modules (English)
Abhinandan (University of Tokyo)
Prismatic $F$-crystals and Wach modules (English)
[ Abstract ]
For an absolutely unramified extension $K/\mathbb{Q}_p$ with perfect residue field, by the works of Fontaine, Colmez, Wach and Berger, it is well known that the category of Wach modules over a certain integral period ring is equivalent to the category of lattices inside crystalline representations of $G_K$ (the absolute Galois group of $K$). Moreover, by the recent works of Bhatt and Scholze, we also know that lattices inside crystalline representations of $G_K$ are equivalent to the category of prismatic $F$-crystals on the absolute prismatic site of $O_K$, the ring of integers of $K$. The goal of this talk is to present a direct construction of the categorical equivalence between Wach modules and prismatic $F$-crystals over the absolute prismatic site of $O_K$. If time permits, we will also mention a generalisation of these results to the case of a "small" base ring.
For an absolutely unramified extension $K/\mathbb{Q}_p$ with perfect residue field, by the works of Fontaine, Colmez, Wach and Berger, it is well known that the category of Wach modules over a certain integral period ring is equivalent to the category of lattices inside crystalline representations of $G_K$ (the absolute Galois group of $K$). Moreover, by the recent works of Bhatt and Scholze, we also know that lattices inside crystalline representations of $G_K$ are equivalent to the category of prismatic $F$-crystals on the absolute prismatic site of $O_K$, the ring of integers of $K$. The goal of this talk is to present a direct construction of the categorical equivalence between Wach modules and prismatic $F$-crystals over the absolute prismatic site of $O_K$. If time permits, we will also mention a generalisation of these results to the case of a "small" base ring.