Number Theory Seminar
Seminar information archive ~04/30|Next seminar|Future seminars 05/01~
Date, time & place | Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Naoki Imai, Shane Kelly |
2015/05/20
17:30-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Shou-Wu Zhang (Princeton University)
Colmez' conjecture in average (English)
Shou-Wu Zhang (Princeton University)
Colmez' conjecture in average (English)
[ Abstract ]
This is a report on a joint work with Xinyi Yuan on a conjectured formula of Colmez about the Faltings heights of CM abelian varieties. I will sketch a deduction of this formula in average of CM types from our early work on Gross-Zagier formula. When combined with a recent work of Tsimerman, this result implies the Andre-Oort conjecture for the moduli of abelian varieties.
Our method is different than a recently announced proof of a weaker form of the average formula by Andreatta, Howard, Goren, and Madapusi Pera: we use neither high dimensional Shimura varieties nor Borcherds' liftings.
This is a report on a joint work with Xinyi Yuan on a conjectured formula of Colmez about the Faltings heights of CM abelian varieties. I will sketch a deduction of this formula in average of CM types from our early work on Gross-Zagier formula. When combined with a recent work of Tsimerman, this result implies the Andre-Oort conjecture for the moduli of abelian varieties.
Our method is different than a recently announced proof of a weaker form of the average formula by Andreatta, Howard, Goren, and Madapusi Pera: we use neither high dimensional Shimura varieties nor Borcherds' liftings.