Number Theory Seminar
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Naoki Imai, Shane Kelly |
2015/01/14
16:40-17:40 Room #056 (Graduate School of Math. Sci. Bldg.)
Laurent Berger (ENS de Lyon)
Iterate extensions and relative Lubin-Tate groups
Laurent Berger (ENS de Lyon)
Iterate extensions and relative Lubin-Tate groups
[ Abstract ]
Let K be a p-adic field, let P(T) be a polynomial with coefficients in K, and let {$u_n$} be a sequence such that $P(u_{n+1}) = u_n$ for all n and $u_0$ belongs to K. The extension of K generated by the $u_n$ is called an iterate extension. I will discuss these extensions, show that under certain favorable conditions there is a theory of Coleman power series, and explain the relationship with relative Lubin-Tate groups.
Let K be a p-adic field, let P(T) be a polynomial with coefficients in K, and let {$u_n$} be a sequence such that $P(u_{n+1}) = u_n$ for all n and $u_0$ belongs to K. The extension of K generated by the $u_n$ is called an iterate extension. I will discuss these extensions, show that under certain favorable conditions there is a theory of Coleman power series, and explain the relationship with relative Lubin-Tate groups.