Seminar on Geometric Complex Analysis
Seminar information archive ~04/02|Next seminar|Future seminars 04/03~
Date, time & place | Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Kengo Hirachi, Shigeharu Takayama |
Seminar information archive
2015/10/26
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Kazuko Matsumoto (Tokyo Univ. of Science)
The Fubini-distance functions to pseudoconvex domains in $\mathbb{C}\mathbb{P}^2$ (Japanese)
Kazuko Matsumoto (Tokyo Univ. of Science)
The Fubini-distance functions to pseudoconvex domains in $\mathbb{C}\mathbb{P}^2$ (Japanese)
[ Abstract ]
In this talk, we would like to present two explicit formulas for the Levi forms of the Fubini-Study distance functions to complex or real hypersurfaces in $\mathbb{C}\mathbb{P}^2$. This is the first step for us to approach the non-existence conjecture of Levi-flat real hypersurfaces in $\mathbb{C}\mathbb{P}^2$. We would like to also discuss a certain important quantity found in the formulas.
In this talk, we would like to present two explicit formulas for the Levi forms of the Fubini-Study distance functions to complex or real hypersurfaces in $\mathbb{C}\mathbb{P}^2$. This is the first step for us to approach the non-existence conjecture of Levi-flat real hypersurfaces in $\mathbb{C}\mathbb{P}^2$. We would like to also discuss a certain important quantity found in the formulas.
2015/10/19
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Atsushi Moriwaki (Kyoto University)
Semiample invertible sheaves with semipositive continuous hermitian metrics (Japanese)
Atsushi Moriwaki (Kyoto University)
Semiample invertible sheaves with semipositive continuous hermitian metrics (Japanese)
[ Abstract ]
Let $(L,h)$ be a pair of a semi ample invertible sheaf and a semipositive continuous hermitian metric on a proper algebraic variety over $C$. In this talk, we would like to present the result that $(L, h)$ has the extension property, answering a generalization of a question of S. Zhang. Moreover, we consider its non-archimedean analogue.
Let $(L,h)$ be a pair of a semi ample invertible sheaf and a semipositive continuous hermitian metric on a proper algebraic variety over $C$. In this talk, we would like to present the result that $(L, h)$ has the extension property, answering a generalization of a question of S. Zhang. Moreover, we consider its non-archimedean analogue.
2015/10/05
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Taiji Marugame (The Univ. of Tokyo)
On the volume expansion of the Blaschke metric on strictly convex domains
Taiji Marugame (The Univ. of Tokyo)
On the volume expansion of the Blaschke metric on strictly convex domains
[ Abstract ]
The Blaschke metric is a projectively invariant metric on a strictly convex domain in a projective manifold, which is a real analogue of the complete Kahler-Einstein metric on strictly pseudoconvex domains. We consider the asymptotic expansion of the volume of subdomains and construct a global conformal invariant of the boundary. We also give some variational formulas under a deformation of the domain.
The Blaschke metric is a projectively invariant metric on a strictly convex domain in a projective manifold, which is a real analogue of the complete Kahler-Einstein metric on strictly pseudoconvex domains. We consider the asymptotic expansion of the volume of subdomains and construct a global conformal invariant of the boundary. We also give some variational formulas under a deformation of the domain.
2015/09/28
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Ryushi Goto (Osaka University)
Flat structures on moduli spaces of generalized complex surfaces
Ryushi Goto (Osaka University)
Flat structures on moduli spaces of generalized complex surfaces
[ Abstract ]
The 2 dimensional complex projective space $P^2$ is rigid as a complex manifold, however $P^2$ admits 2 dimensional moduli spaces of generalized complex structures which has a torsion free flat connection on a open strata. We show that logarithmic generalized complex structure with smooth elliptic curve as type changing loci has unobstructed deformations which are parametrized by an open set of the second de Rham cohomology group of the complement of type changing loci. Then we will construct moduli spaces of generalized del Pezzo surfaces. We further investigate deformations of logarithmic generalized complex structures in the cases of type changing loci with singularities. By using types of singularities, we obtain a stratification of moduli spaces of generalized complex structures on complex surfaces and it turns out that each strata corresponding to nodes admits a flat torsion free connection.
The 2 dimensional complex projective space $P^2$ is rigid as a complex manifold, however $P^2$ admits 2 dimensional moduli spaces of generalized complex structures which has a torsion free flat connection on a open strata. We show that logarithmic generalized complex structure with smooth elliptic curve as type changing loci has unobstructed deformations which are parametrized by an open set of the second de Rham cohomology group of the complement of type changing loci. Then we will construct moduli spaces of generalized del Pezzo surfaces. We further investigate deformations of logarithmic generalized complex structures in the cases of type changing loci with singularities. By using types of singularities, we obtain a stratification of moduli spaces of generalized complex structures on complex surfaces and it turns out that each strata corresponding to nodes admits a flat torsion free connection.
2015/07/13
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Yoshihiko Matsumoto (Tokyo Institute of Technology)
$L^2$ cohomology and deformation of Einstein metrics on strictly pseudo convex domains
Yoshihiko Matsumoto (Tokyo Institute of Technology)
$L^2$ cohomology and deformation of Einstein metrics on strictly pseudo convex domains
[ Abstract ]
Consider a bounded domain of a Stein manifold, with strictly pseudo convex smooth boundary, endowed with an ACH-Kähler metric (examples being domains of $\mathbb{C}^n$ with their Bergman metrics or Cheng-Yau’s Einstein metrics). We give a vanishing theorem on the $L^2$ $\overline{\partial}$-cohomology group with values in the holomorphic tangent bundle. As an application, Einstein perturbations of the Cheng-Yau metric are discussed.
Consider a bounded domain of a Stein manifold, with strictly pseudo convex smooth boundary, endowed with an ACH-Kähler metric (examples being domains of $\mathbb{C}^n$ with their Bergman metrics or Cheng-Yau’s Einstein metrics). We give a vanishing theorem on the $L^2$ $\overline{\partial}$-cohomology group with values in the holomorphic tangent bundle. As an application, Einstein perturbations of the Cheng-Yau metric are discussed.
2015/07/06
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Akio Kodama
On the structure of holomorphic automorphism groups of generalized complex ellipsoids and generalized Hartogs triangles (JAPANESE)
Akio Kodama
On the structure of holomorphic automorphism groups of generalized complex ellipsoids and generalized Hartogs triangles (JAPANESE)
[ Abstract ]
In this talk, we first review the structure of holomorphic automorphism groups of generalized complex ellipsoids and, as an application of this, we clarify completely the structure of generalized Hartogs triangles. Finally, if possible, I will mention some known results on proper holomorphic self-mappings of generalized complex ellipsoids, generalized Hartogs triangles, and discuss a related question to these results.
In this talk, we first review the structure of holomorphic automorphism groups of generalized complex ellipsoids and, as an application of this, we clarify completely the structure of generalized Hartogs triangles. Finally, if possible, I will mention some known results on proper holomorphic self-mappings of generalized complex ellipsoids, generalized Hartogs triangles, and discuss a related question to these results.
2015/06/29
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Yuta Suzuki (Univ. of Tokyo)
Cohomology Formula for Obstructions to Asymptotic Chow semistability (JAPANESE)
Yuta Suzuki (Univ. of Tokyo)
Cohomology Formula for Obstructions to Asymptotic Chow semistability (JAPANESE)
[ Abstract ]
Odaka and Wang proved the intersection formula for the Donaldson-Futaki invariant. We generalize this result for the higher Futaki invariants which are obstructions to asymptotic Chow semistability.
Odaka and Wang proved the intersection formula for the Donaldson-Futaki invariant. We generalize this result for the higher Futaki invariants which are obstructions to asymptotic Chow semistability.
2015/06/22
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Susumu Tanabé (Université Galatasaray)
Amoebas and Horn hypergeometric functions
Susumu Tanabé (Université Galatasaray)
Amoebas and Horn hypergeometric functions
[ Abstract ]
Since 10 years, the utility of the Horn hypergeometric functions in Algebraic Geometry has been recognized in a small circle of specialists. The main reason for this interest lies in the fact that every period integral of an affine non-degenerate complete intersection variety can be described as a Horn hypergeometric function (HGF). Therefore the monodromy of the middle dimensional homology can be calculated as the monodromy of an Horn HGF’s.
There is a slight difference between the Gel’fand-Kapranov-Zelevinski HGF’s and the Horn HGF’s. The latter may contain so called “persistent polynomial solutions” that cannot be mapped to GKZ HGF’s via a natural isomorphism between two spaces of HGF’s. In this talk, I will review basic facts on the Horn HGF’s. As a main tool to study the topology of the discriminant loci together with the
analytic aspects of the story, amoebas – image by the log map of the discriminant- will be highlighted.
As an application of this theory the following theorem can be established. For a bivariate Horn HGF system, its monodromy invariant space is always one dimensional if and only if its Ore-Sato polygon is either a zonotope or a Minkowski sum of a triangle and some segments.
This is a collaboration with Timur Sadykov.
Since 10 years, the utility of the Horn hypergeometric functions in Algebraic Geometry has been recognized in a small circle of specialists. The main reason for this interest lies in the fact that every period integral of an affine non-degenerate complete intersection variety can be described as a Horn hypergeometric function (HGF). Therefore the monodromy of the middle dimensional homology can be calculated as the monodromy of an Horn HGF’s.
There is a slight difference between the Gel’fand-Kapranov-Zelevinski HGF’s and the Horn HGF’s. The latter may contain so called “persistent polynomial solutions” that cannot be mapped to GKZ HGF’s via a natural isomorphism between two spaces of HGF’s. In this talk, I will review basic facts on the Horn HGF’s. As a main tool to study the topology of the discriminant loci together with the
analytic aspects of the story, amoebas – image by the log map of the discriminant- will be highlighted.
As an application of this theory the following theorem can be established. For a bivariate Horn HGF system, its monodromy invariant space is always one dimensional if and only if its Ore-Sato polygon is either a zonotope or a Minkowski sum of a triangle and some segments.
This is a collaboration with Timur Sadykov.
2015/06/15
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Saotome Takanari
The Lyapunov-Schmidt reduction for the CR Yamabe equation on the Heisenberg group (Japanese)
Saotome Takanari
The Lyapunov-Schmidt reduction for the CR Yamabe equation on the Heisenberg group (Japanese)
[ Abstract ]
We will study CR Yamabe equation for a CR structure on the Heisenberg group which is deformed from the standard structure. By using Lyapunov-Schmidt reduction, it is shown that the perturbation of the standard CR Yamabe solution is a solution to the deformed CR Yamabe equation, under certain conditions of the deformation.
We will study CR Yamabe equation for a CR structure on the Heisenberg group which is deformed from the standard structure. By using Lyapunov-Schmidt reduction, it is shown that the perturbation of the standard CR Yamabe solution is a solution to the deformed CR Yamabe equation, under certain conditions of the deformation.
2015/06/08
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Hisashi Kasuya (Tokyo Institute of Technology)
Mixed Hodge structures and Sullivan's minimal models of Sasakian manifolds (Japanese)
Hisashi Kasuya (Tokyo Institute of Technology)
Mixed Hodge structures and Sullivan's minimal models of Sasakian manifolds (Japanese)
[ Abstract ]
By the result of Deligne, Griffiths, Morgan and Sullivan, the Malcev completion of the fundamental group of a compact Kahler manifold is quadratically presented. This fact gives good advances in "Kahler group problem" (Which groups can be the fundamental groups of compact Kahler manifolds?) In this talk, we consider the fundamental groups of compact Sasakian manifolds. We show that the Malcev Lie algebra of the fundamental group of a compact 2n+1-dimensional Sasakian manifold with n >= 2 admits a quadratic presentation by using Morgan's bigradings of Sullivan's minimal models of mixed-Hodge diagrams.
By the result of Deligne, Griffiths, Morgan and Sullivan, the Malcev completion of the fundamental group of a compact Kahler manifold is quadratically presented. This fact gives good advances in "Kahler group problem" (Which groups can be the fundamental groups of compact Kahler manifolds?) In this talk, we consider the fundamental groups of compact Sasakian manifolds. We show that the Malcev Lie algebra of the fundamental group of a compact 2n+1-dimensional Sasakian manifold with n >= 2 admits a quadratic presentation by using Morgan's bigradings of Sullivan's minimal models of mixed-Hodge diagrams.
2015/05/25
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Tomoyuki Hisamoto (Nagoya Univ.)
On uniform K-stability (Japanese)
Tomoyuki Hisamoto (Nagoya Univ.)
On uniform K-stability (Japanese)
[ Abstract ]
It is a joint work with Sébastien Boucksom and Mattias Jonsson. We first introduce functionals on the space of test configurations, as non-Archimedean analogues of classical functionals on the space of Kähler metrics. Then, uniform K-stability is defined as a counterpart of K-energy's coercivity condition. Finally, reproving and strengthening Y. Odaka's results, we study uniform K-stability of Kähler-Einstein manifolds.
It is a joint work with Sébastien Boucksom and Mattias Jonsson. We first introduce functionals on the space of test configurations, as non-Archimedean analogues of classical functionals on the space of Kähler metrics. Then, uniform K-stability is defined as a counterpart of K-energy's coercivity condition. Finally, reproving and strengthening Y. Odaka's results, we study uniform K-stability of Kähler-Einstein manifolds.
2015/05/18
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Masanori Adachi (Tokyo Univ. of Science)
On a global estimate of the Diederich–Fornaess index of Levi-flat real hypersurfaces (Japanese)
Masanori Adachi (Tokyo Univ. of Science)
On a global estimate of the Diederich–Fornaess index of Levi-flat real hypersurfaces (Japanese)
[ Abstract ]
We give yet another proof for a global estimate of the Diederich-Fornaess index of relatively compact domains with Levi-flat boundary, namely, the index must be smaller than or equal to the reciprocal of the dimension of the ambient space. Although the Diederich-Fornaess index is originally defined for relatively compact domains in complex manifolds, our formulation reveals that it makes sense for abstract Levi-flat CR manifolds.
We give yet another proof for a global estimate of the Diederich-Fornaess index of relatively compact domains with Levi-flat boundary, namely, the index must be smaller than or equal to the reciprocal of the dimension of the ambient space. Although the Diederich-Fornaess index is originally defined for relatively compact domains in complex manifolds, our formulation reveals that it makes sense for abstract Levi-flat CR manifolds.
2015/05/11
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Kengo Hirachi (The Univ. of Tokyo)
Integral Kahler Invariants and the Bergman kernel asymptotics for line bundles
Kengo Hirachi (The Univ. of Tokyo)
Integral Kahler Invariants and the Bergman kernel asymptotics for line bundles
[ Abstract ]
On a compact Kahler manifold, one can define global invariants by integrating local invariants of the metric. Assume that a global invariant thus obtained depends only on the Kahler class. Then we show that the integrand can be decomposed into a Chern polynomial (the integrand of a Chern number) and divergences of one forms, which do not contribute to the integral. We apply this decomposition formula to describe the asymptotic expansion of the Bergman kernel for positive line bundles and to show that the CR Q-curvature on a Sasakian manifold is a divergence. This is a joint work with Spyros Alexakis (U Toronto).
On a compact Kahler manifold, one can define global invariants by integrating local invariants of the metric. Assume that a global invariant thus obtained depends only on the Kahler class. Then we show that the integrand can be decomposed into a Chern polynomial (the integrand of a Chern number) and divergences of one forms, which do not contribute to the integral. We apply this decomposition formula to describe the asymptotic expansion of the Bergman kernel for positive line bundles and to show that the CR Q-curvature on a Sasakian manifold is a divergence. This is a joint work with Spyros Alexakis (U Toronto).
2015/04/27
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Sachiko Hamano (Fukushima Univ.)
Variational formulas for canonical differentials and application (Japanese)
Sachiko Hamano (Fukushima Univ.)
Variational formulas for canonical differentials and application (Japanese)
[ Abstract ]
We prove the variational formulas of the second order for $L_1$- and $L_0$-canonical differentials, which with the remarkable contrast are our first example in the case of the deforming non-planar open Riemann surface. As a direct application, we show the rigidity of the Euclidean radius of the moduli disk on open torus under pseudoconvexity. The main part of this talk is a joint work with Masakazu Shiba and Hiroshi Yamaguchi.
We prove the variational formulas of the second order for $L_1$- and $L_0$-canonical differentials, which with the remarkable contrast are our first example in the case of the deforming non-planar open Riemann surface. As a direct application, we show the rigidity of the Euclidean radius of the moduli disk on open torus under pseudoconvexity. The main part of this talk is a joint work with Masakazu Shiba and Hiroshi Yamaguchi.
2015/04/20
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Akito Futaki (The Univ. of Tokyo)
Weighted Laplacians on real and complex complete metric measure spaces (Japanese)
Akito Futaki (The Univ. of Tokyo)
Weighted Laplacians on real and complex complete metric measure spaces (Japanese)
[ Abstract ]
We compare the weighted Laplacians on real and complex (K¥"ahler) metric measure spaces. In the compact case K¥"ahler metric measure spaces are considered on Fano manifolds for the study of K¥"ahler Ricci solitons while real metric measure spaces are considered with Bakry-¥'Emery Ricci tensor. There are twisted Laplacians which are useful in both cases but look alike each other. We see that if we consider noncompact complete manifolds significant differences appear.
We compare the weighted Laplacians on real and complex (K¥"ahler) metric measure spaces. In the compact case K¥"ahler metric measure spaces are considered on Fano manifolds for the study of K¥"ahler Ricci solitons while real metric measure spaces are considered with Bakry-¥'Emery Ricci tensor. There are twisted Laplacians which are useful in both cases but look alike each other. We see that if we consider noncompact complete manifolds significant differences appear.
2015/04/13
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Yu Yasufuku (Nihon Univ.)
Campana's Multiplicity and Integral Points on P^2 (English)
Yu Yasufuku (Nihon Univ.)
Campana's Multiplicity and Integral Points on P^2 (English)
[ Abstract ]
We analyze when the complements of (possibly reducible) curves in P^2 have Zariski-dense integral points. The analysis utilizes the structure theories for affine surfaces based on logarithmic Kodaira dimension. When the log Kodaira dimension is one, an important role is played by Campana's multiplicity divisors for fibrations, but there are some subtleties. This is a joint work with Aaron Levin (Michigan State).
We analyze when the complements of (possibly reducible) curves in P^2 have Zariski-dense integral points. The analysis utilizes the structure theories for affine surfaces based on logarithmic Kodaira dimension. When the log Kodaira dimension is one, an important role is played by Campana's multiplicity divisors for fibrations, but there are some subtleties. This is a joint work with Aaron Levin (Michigan State).
2015/04/06
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Ken-ichi Yoshikawa (Kyoto Univ.)
Analytic torsion for K3 surfaces with involution (Japanese)
Ken-ichi Yoshikawa (Kyoto Univ.)
Analytic torsion for K3 surfaces with involution (Japanese)
[ Abstract ]
In 2004, I introduced a holomorphic torsion invariant for 2-elementary K3 surfaces, i.e., K3 surfaces with involution. In the talk, I will report a recent progress in this invariant. Namely, for all possible deformation types, the holomorphic torsion invariant viewed as a function on the moduli space, is expressed as the product of an explicit Borcherds lift and an explicit Siegel modular form. If time permits, I will interpret the result in terms of the BCOV invariant, i.e., the genus-one string amplitude in B-model, for Calabi-Yau threefolds of Borcea-Voisin. This is a joint work with Shouhei Ma.
In 2004, I introduced a holomorphic torsion invariant for 2-elementary K3 surfaces, i.e., K3 surfaces with involution. In the talk, I will report a recent progress in this invariant. Namely, for all possible deformation types, the holomorphic torsion invariant viewed as a function on the moduli space, is expressed as the product of an explicit Borcherds lift and an explicit Siegel modular form. If time permits, I will interpret the result in terms of the BCOV invariant, i.e., the genus-one string amplitude in B-model, for Calabi-Yau threefolds of Borcea-Voisin. This is a joint work with Shouhei Ma.
2015/02/02
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Junjiro Noguchi (University of Tokyo)
Inverse of an Abelian Integral on open Riemann Surfaces and a Proof of Behnke-Stein's Theorem
Junjiro Noguchi (University of Tokyo)
Inverse of an Abelian Integral on open Riemann Surfaces and a Proof of Behnke-Stein's Theorem
[ Abstract ]
Let $X$ be an open Riemann surface and let $\Omega \Subset X$ be a relatively compact domain of $X$. We firstly introduce a scalar function $\rho(a, \Omega)>0$ for $a \in \Omega$ by means of an Abelian integral, which is a sort of convergence radius of the inverse of the Abelian integral, and heuristically measures the distance from $a$ to the boundary $\partial \Omega$. We prove a theorem of Cartan-Thullen type with $\rho(a, \Omega)$ for a holomorphically convex hull $\hat{K}_\Omega$ of a compact subset $K \Subset \Omega$; in particular, $-\log \rho(a, \Omega)$ is a continuous subharmonic function in $\Omega$. Secondly, we give another proof of Behnke-Stein's Theorem (the Steiness of $X$), one of the most basic facts in the theory of Riemann surfaces, by making use of the obtained theorem of Cartan--Thullen type with $\rho(a, \Omega)$, and Oka's Jôku-Ikô together with Grauert's Finiteness Theorem which is now a rather easy consequence of Oka-Cartan's Fundamental Theorem, particularly in one dimensional case.
Let $X$ be an open Riemann surface and let $\Omega \Subset X$ be a relatively compact domain of $X$. We firstly introduce a scalar function $\rho(a, \Omega)>0$ for $a \in \Omega$ by means of an Abelian integral, which is a sort of convergence radius of the inverse of the Abelian integral, and heuristically measures the distance from $a$ to the boundary $\partial \Omega$. We prove a theorem of Cartan-Thullen type with $\rho(a, \Omega)$ for a holomorphically convex hull $\hat{K}_\Omega$ of a compact subset $K \Subset \Omega$; in particular, $-\log \rho(a, \Omega)$ is a continuous subharmonic function in $\Omega$. Secondly, we give another proof of Behnke-Stein's Theorem (the Steiness of $X$), one of the most basic facts in the theory of Riemann surfaces, by making use of the obtained theorem of Cartan--Thullen type with $\rho(a, \Omega)$, and Oka's Jôku-Ikô together with Grauert's Finiteness Theorem which is now a rather easy consequence of Oka-Cartan's Fundamental Theorem, particularly in one dimensional case.
2015/01/26
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Tomoki Arakawa (Sophia Univeristy)
On the uniform birationality of the pluriadjoint maps (Japanese)
Tomoki Arakawa (Sophia Univeristy)
On the uniform birationality of the pluriadjoint maps (Japanese)
[ Abstract ]
In this talk, we investigate higher dimensional polarized manifolds by using singular hermitian metrics and multiplier ideal sheaves. In particular, we show the uniform birationality of the pluriadjoint maps.
In this talk, we investigate higher dimensional polarized manifolds by using singular hermitian metrics and multiplier ideal sheaves. In particular, we show the uniform birationality of the pluriadjoint maps.
2015/01/19
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Hiroshi Yamaguchi (Shia University, Prof. emeritus)
Hyperbolic span and pseudoconvexity (Japanese)
Hiroshi Yamaguchi (Shia University, Prof. emeritus)
Hyperbolic span and pseudoconvexity (Japanese)
[ Abstract ]
We show that the hyperbolic span for open torus (which is introduced by M. Shiba in 1993) has the intimate relation with the pseudoconvexity.
We show that the hyperbolic span for open torus (which is introduced by M. Shiba in 1993) has the intimate relation with the pseudoconvexity.
2014/12/15
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Hajime Tsuji (Sophia University)
The limits of Kähler-Ricci flows
Hajime Tsuji (Sophia University)
The limits of Kähler-Ricci flows
2014/12/08
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Masatake Tomari (Nihon University)
On maximal ideal cycle and fundamental cycle of normal two-dimensional quasi-homogeneous singularities, and singularities with star-shaped resolution (JAPANESE)
Masatake Tomari (Nihon University)
On maximal ideal cycle and fundamental cycle of normal two-dimensional quasi-homogeneous singularities, and singularities with star-shaped resolution (JAPANESE)
2014/12/01
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Takeo Ohsawa (Nagoya University)
Effective and noneffective extension theorems (Japanese)
Takeo Ohsawa (Nagoya University)
Effective and noneffective extension theorems (Japanese)
[ Abstract ]
As an effective extension theorem, I will review the sharp $L^2$ extension theorem explaining the ideas of its proofs due to Blocki and Guan-Zhou. A new proof using the Poincare metric with be given, too. As a noneffective extension theorem, I will talk about an extension theorem from semipositive divisors. It is obtained as an application of an isomorphism theorem which is essentially contained in my master thesis.
As an effective extension theorem, I will review the sharp $L^2$ extension theorem explaining the ideas of its proofs due to Blocki and Guan-Zhou. A new proof using the Poincare metric with be given, too. As a noneffective extension theorem, I will talk about an extension theorem from semipositive divisors. It is obtained as an application of an isomorphism theorem which is essentially contained in my master thesis.
2014/11/17
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Yasufumi Nitta (Tokyo Institute of Technology)
On strong K-stability of polarized algebraic manifolds (JAPANESE)
Yasufumi Nitta (Tokyo Institute of Technology)
On strong K-stability of polarized algebraic manifolds (JAPANESE)
2014/11/10
10:30-12:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Yusaku Tiba (Tokyo Institute of Technology)
On a convex level set of a plurisubharmonic function and the support of the Monge-Ampere current (JAPANESE)
Yusaku Tiba (Tokyo Institute of Technology)
On a convex level set of a plurisubharmonic function and the support of the Monge-Ampere current (JAPANESE)
[ Abstract ]
In this talk, we study a geometric property of a continuous plurisubharmonic function which is a solution of the Monge-Ampere equation and has a convex level set. By using our results and Lempert's results, we show a relation between the supports of the Monge-Ampere currents and complex $k$-extreme points of closed balls for the Kobayashi distance in a bounded convex domain in $C^n$.
In this talk, we study a geometric property of a continuous plurisubharmonic function which is a solution of the Monge-Ampere equation and has a convex level set. By using our results and Lempert's results, we show a relation between the supports of the Monge-Ampere currents and complex $k$-extreme points of closed balls for the Kobayashi distance in a bounded convex domain in $C^n$.