Seminar on Geometric Complex Analysis
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Kengo Hirachi, Shigeharu Takayama |
2017/10/02
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Yusaku Tiba (Ochanomizu University)
The extension of holomorphic functions on a non-pluriharmonic locus
Yusaku Tiba (Ochanomizu University)
The extension of holomorphic functions on a non-pluriharmonic locus
[ Abstract ]
Let $n \geq 4$ and let $\Omega$ be a bounded hyperconvex domain in $\mathbb{C}^{n}$. Let $\varphi$ be a negative exhaustive smooth plurisubharmonic function on $\Omega$. In this talk, we show that any holomorphic function defined on a connected open neighborhood of the support of $(i\partial \overline{\partial}\varphi)^{n-3}$ can be extended to the holomorphic function on $\Omega$.
Let $n \geq 4$ and let $\Omega$ be a bounded hyperconvex domain in $\mathbb{C}^{n}$. Let $\varphi$ be a negative exhaustive smooth plurisubharmonic function on $\Omega$. In this talk, we show that any holomorphic function defined on a connected open neighborhood of the support of $(i\partial \overline{\partial}\varphi)^{n-3}$ can be extended to the holomorphic function on $\Omega$.