Processing math: 100%

Applied Analysis

Seminar information archive ~07/04Next seminarFuture seminars 07/05~

Date, time & place Thursday 16:00 - 17:30 002Room #002 (Graduate School of Math. Sci. Bldg.)

Seminar information archive

2011/01/27

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Nitsan Ben-Gal (The Weizmann Institute of Science)
Attraction at infinity: Constructing non-compact global attractors in the slowly non-dissipative realm (ENGLISH)
[ Abstract ]
One of the primary tools for understanding the much-studied realm of reaction-diffusion equations is the global attractor, which provides us with a qualitative understanding of the governing behaviors of solutions to the equation in question. Nevertheless, the classic global attractor for such systems is defined to be compact, and thus attractor theory has previously excluded such analysis from being applied to non-dissipative reaction-diffusion equations.
In this talk I will present recent results in which I developed a non-compact analogue to the classical global attractor, and will discuss the methods derived in order to obtain a full decomposition of the non-compact global attractor for a slowly non-dissipative reaction-diffusion equation. In particular, attention will be paid to the nodal property techniques and reduction methods which form a critical underpinning of asymptotics research in both dissipative and non-dissipative evolutionary equations. I will discuss the concepts of the ‘completed inertial manifold’ and ‘non-compact global attractor’, and show how these in particular allow us to produce equivalent results for a class of slowly non-dissipative equations as have been achieved for dissipative equations. Additionally, I will address the behavior of solutions to slowly non-dissipative equations approaching and at infinity, the realm which presents both the challenges and rewards of removing the necessity of dissipativity.

2010/07/08

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Anna Vainchtein (University of Pittsburgh, Department of Mathematics)
Effect of nonlinearity on the steady motion of a twinning dislocation (ENGLISH)
[ Abstract ]
We consider the steady motion of a twinning dislocation in a Frenkel-Kontorova lattice with a double-well substrate potential that has a non-degenerate spinodal region. Semi-analytical traveling wave solutions are constructed for the piecewise quadratic potential, and their stability and further effects of nonlinearity are investigated numerically. We show that the width of the spinodal region and the nonlinearity of the potential have a significant effect on the dislocation kinetics, resulting in stable steady motion in some low-velocity intervals and lower propagation stress. We also conjecture that a stable steady propagation must correspond to an increasing portion of the kinetic relation between the applied stress and dislocation velocity.

2010/06/24

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Hideki Murakawa (University of Toyama)
Reaction-diffusion approximation to nonlinear diffusion problems (JAPANESE)

2010/06/10

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Christian Klingenberg (Wuerzburg 大学 )
Hydrodynamic limit of microscopic particle systems to conservation laws to fluid models
[ Abstract ]
In this talk we discuss the hydrodynamic limit of a microscopic description of a fluid to its macroscopic PDE description.

In the first part we consider flow through porous media, i.e. the macroscopic description is a scalar conservation law. Here the new feature is that we allow sudden changes in porosity and thereby the flux may have discontinuities in space. Microscopically this is described through an interacting particle system having only one conserved quantity, namely the total mass. Macroscopically this gives rise to a scalar conservation laws with space dependent flux functions

u_t + f(u, x)_x = 0 .

We are able to derive the PDE together with an entropy condition as a hydrodynamic limit from a microscopic interacting particle system.

In the second part we consider a Hamiltonian system with boundary conditions. Microscopically this is described through a system of coupled oscillators. Macroscopically this will lead to a system of conservation laws, namely the p-system. The proof of the hydrodynamic limit is restricted to smooth solutions. The new feature is that we can derive this with boundary conditions.

2010/04/22

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Jens Starke (Technical University of Denmark)
Deterministic and stochastic modelling of catalytic surface processes (ENGLISH)
[ Abstract ]
Three levels of modelling, the microscopic, the mesoscopic and the macroscopic level are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. The macroscopic description can be derived rigorously for low pressure conditions as limit of the stochastic many particle model for large particle numbers. This is in correspondence with the successful description of experiments under low pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena of stochastic origin can be observed in experiments. The introduced models include a new approach for the platinum phase transition which allows for a unification of existing models for Pt(100) and Pt(110).

The rich nonlinear dynamical behaviour of the macroscopic reaction kinetics is investigated and shows good agreement with low pressure experiments. Furthermore, for intermediate pressures, noise-induced pattern formation, so-called raindrop patterns which are not captured by earlier models, can be reproduced and are shown in simulations.
This is joint work with M. Eiswirth, H. Rotermund, G. Ertl,
Frith Haber Institut, Berlin, K. Oelschlaeger, University of
Heidelberg and C. Reichert, INSA, Lyon.

2010/04/15

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Alberto Tesei (University of Rome 1)
Long-time behaviour of solutions of a forward-backward parabolic equation
[ Abstract ]
We discuss some recent results concerning the asymptotic behaviour of entropy measure-valued solutions for a class of ill-posed forward-backward parabolic equations, which arise in the theory of phase transitions.

2010/02/18

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Bendong LOU (同済大学)
Homogenization limit of a parabolic equation with nonlinear boundary conditions
[ Abstract ]
We consider a quasilinear parabolic equation with the following nonlinear Neumann boundary condition:
"the slope of the solution on the boundary is a function g of the value of the solution". Here g takes values near its supremum with the frequency of epsilon. We show that the homogenization limit of the solution, as epsilon tends to 0, is the solution satisfying the linear Neumann boundary condition: "the slope of the solution on the boundary is the supremum of g".

2010/01/28

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
清水扇丈 (静岡大学理学部)
相転移を伴う非圧縮性2相流の線形化問題について
[ Abstract ]
氷が常圧で0度以上になると水になるなどの相転移を伴う非圧縮性2相流に対し,質量保存則, 運動量保存則, エネルギー保存則を界面を含む系全体に適用し, 線形化した方程式系について考察する. 本講演では, 線形化方程式系のL_p-L_q 最大正則性定理について述べる.

密度が異なる場合は, 法線方向の高さ関数は表面張力つき2相Stokes問題の高さ関数と同じ正則性をもち, 系は流速が支配するのに対し,密度が等しい場合は, Gibbs-Thomson補正された表面張力つき2相Stefan問題の高さ関数と同じ正則性をもち, 系は温度が支配する.

2010/01/21

16:00-17:30   Room #122 (Graduate School of Math. Sci. Bldg.)
Danielle Hilhorst (パリ南大学 / CNRS)
A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation
[ Abstract ]
We propose a finite volume method on general meshes for degenerate parabolic convection-reaction-diffusion equations. Such equations arise for instance in the modeling of contaminant transport in groundwater. After giving a convergence proof, we present the results of numerical tests.

2009/12/17

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Hatem Zaag (CNRS / パリ北大学)
A Liouville theorem for a semilinear heat equation with no gradient structure
[ Abstract ]
We prove a Liouville Theorem for entire solutions of a vector
valued semilinear heat equation with no gradient structure. Classical tools such as the maximum principle or energy techniques break down and have to be replaced by a new approach. These tools involve a very good understanding of the dynamical system formulation of the equation in the selfsimilar setting. Using the Liouville Theorem, we derive uniform estimates for blow-up solutions of the same equation.

2009/11/26

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
小池 茂昭 (埼玉大学・理学部数学科)
L^p 粘性解の弱ハルナック不等式の最近の進展
[ Abstract ]
Caffarelli による粘性解の regularity 研究 (1989 年) を基に, 1996 年に Caffarelli- Crandall-Kocan-Swiech によって L^p 粘性解の概念が導入された. L^p 粘性解とは, 通 常の粘性解理論では扱えなかった, 非有界非斉次項を持つ (非発散型) 偏微分方程 式にも適用可能な弱解である.
しかしながら, 係数に関しては有界係数しか研究されていなかった. その後, Swiech との共同研究により, 係数が非有界だが適当なべき乗可積分性を仮定して Aleksandrov-Bakelman-Pucci 型の最大値原理を導くことが可能になった.
本講演では, 非有界係数・非斉事項を持った, 完全非線形 2 階一様楕円型方程式 の L^p 粘性解の弱ハルナック不等式に関する最近のSwiech との共同研究の結果を紹 介する.

2009/11/05

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
大西 勇 (広島大学大学院理学研究科)
A Mathematical Aspect of the One-Dimensional Keller and Rubinow Model for Liesegang Bands
[ Abstract ]
In 1896, colloid-chemist R.E. Liesegang [4] observed strikingly
regular patterns in precipitation-reaction processes, which are referred to as Liesegang bands or rings, according to their shape. In this talk I introduce an attempt to understand from a mathematical viewpoint the experiments in which regularized structures with spatially distinct bands of precipitated material are exhibited, with clearly visible scaling properties. This study is a result [1] of a collaboration with Professors D. Hilhorst, R. van der Hout, and M. Mimura.

References:

[1] Hilhorst, D., van der Hout, R., Mimura, M., and Ohnishi, I.: A Mathematical Study of the One-Dimensional Keller and Rubinow Model for Liesegang Bands. J. Stat Phys 135: 107-132 (2009)
[2] Kai, S., Muller, S.C.: Spatial and temporal macroscopic structures in chemical reaction system: precipitation patterns and interfacial motion. Sci. Form 1, 8-38 (1985)
[3] Keller, J.B., Rubinow, S.I.: Recurrent precipitation and Liesegang rings. J. Chem. Phys. 74, 5000-5007 (1981)
[4] Liesegang, R.E.: Chemische Fernwirkung. Photo. Archiv 800, 305-309 (1896)
[5] Mimura, M., Ohnishi, I., Ueyama, D.: A mathematical aspect of Liesegang phenomena in two space dimensions. Res. Rep. Res. Inst. Math. Sci. 1499, 185-201 (2006)
[6] Ohnishi, I.,Mimura, M.: A mathematical aspect of Liesegang phenomena. In: Proceedings of Equadiff-11, pp. 343-352 (2005).

2009/09/17

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Norayr MATEVOSYAN (ケンブリッジ大学・数理)
On a parabolic free boundary problem modelling price formation
[ Abstract ]
We will discuss existence and uniqueness of solutions for a one dimensional parabolic evolution equation with a free boundary. This problem was introduced by J.-M. Lasry and P.-L. Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in time-extension of the local solution which is intimately connected to the regularity of the free boundary.
We also present numerical results.

2009/09/10

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Henrik SHAHGHOLIAN (王立工科大学・ストックホルム)
A two phase free boundary problem with applications in potential theory
[ Abstract ]
In this talk I will present some recent directions, still to be developed, in potential theory, that are connected to a two-phase free boundary problems. The potential theoretic topic that I will discuss is the so called Quadrature Domains.

The most simple free boundary/potential problem that we can present is the following. Given constants a_\\pm, \\lambda_\\pm >0 and two points x^\\pm in bfRn. Find a function u such that
Deltau=left(lambda+chiu>0a+deltax+right)left(lambdachiu<0adeltaxright),
where delta is the Dirac mass.

In general this problem is solvable for two Dirac masses. The requirement, somehow implicit in the above equation, is that the support of the measures (in this case the Dirac masses) is to be in included in the positivity and the negativity set (respectively).

In general this problem does not have a solution, and there some strong restrictions on the measures, in order to have some partial results.

2009/05/14

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
東海林 まゆみ (日本女子大学・理学部・数物科学科)
Particle trajectories around a running cylinder in Brinkman's porous-media flow
[ Abstract ]
Motion of fluid particles provides us with interesting problems of dynamical
systems. We consider here the movement of particles around a running cylinder.
Classically J. C. Maxwell (1870) considered the problem in irrotational flow of
inviscid fluid. He showed that the complete solution is given by the elliptic
functions and the trajectory forms one of the elastica curves. C. Darwin ('53)
considered a similar problem for a moving sphere. In this case, the solution
cannot be written in terms of elliptic functions but can be expressed by a
simple definite integral.
We consider a similar problem in Brinkman's porous-media flow which is proposed
by Brinkman ('49). Our numerical examinations reveals some new interesting
features of the particle trajectories which are not observed in the case of
irrotational flow. We will report them.

2009/04/30

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
池田 幸太 (明治大 研究・知財戦略機構)
ギーラー・マインハルト方程式に対するシャドウ系おける多重スポットの不安定性
[ Abstract ]
生物の形態形成に関するモデル方程式である、ギーラー・マインハルト方程式に対するシャドウ系を考える。
この系にはスポットパターンと呼ばれる定常解が存在することが知られており、この解は、その値が非常に大きい点(スポット)を持つこととその近傍の外側では急激に値が減少することにより特徴付けされる。
実は、パラメータと領域を固定しても、単一のスポットだけからなるものや、2つ以上のスポットを持つ定常解、多重スポットが同時に存在しうるが、多重スポットは常に不安定であると予想されている。
本講演では、この予想を数学的に保証するために、多重スポットが適当な条件を満たせば不安定であることを示したい。

2009/02/05

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Jin CHENG (程 晋) (復旦大学)
Heat transfer in composite materials with Stenfen-Boltzmann conditions and related inverse problems
[ Abstract ]
In this talk, we will present our recent results on the mathematical model of the heat transfer in the composite materials. The related inverse problems are discussed. The numerical results show our methods are effective.

2009/01/29

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
千葉 逸人 (京都大学 情報学研究科)
Extension and Unification of Singular Perturbation Methods for ODE's Based on the Renormalization Gourp Method
[ Abstract ]
くりこみ群の方法は微分方程式に対する特異摂動法の一種であり,多重尺度法、平均化法、normal forms, 中心多様体縮約、位相縮約、WKB解析などの古くから知られる摂動法を統一的に扱うことができる.ここではくりこみ群の方法を数学的定式化を与え,結合振動子系などへのいくつかの応用も紹介したい.

2009/01/15

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
木村 正人 (九州大学・大学院数理学研究院)
On a phase field model for mode III crack growth
[ Abstract ]
2次元弾性体の面外変形による亀裂の進展を記述する,ある
フェイズ・フィールド・モデルについて考える.モデルの
導出は,Francfort-Marigoによる拡張された意味での
Griffithの破壊基準をもとに,Ambrosio-Tortorelliに
よるエネルギー正則化のアイデアを用いてなされる.
現状で得られている数学的な結果と,適合型メッシュを
用いた有限要素シミュレーション例についての紹介も行う.
本研究は高石武史(広島国際学院大学)との共同研究である.

2008/11/20

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Jan Haskovec
(Vienna University of Technology(オーストリア))
Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System
[ Abstract ]
We construct an approximation to the measure valued, global in time solutions to the Keller-Segel model in 2D, based on systems of stochastic interacting particles. The advantage of our approach is that it reproduces the well-known dichtomy in the qualitative behavior of the system and, moreover, captures the solution even after the possible blow-up events. We present a numerical method based on this approach and show some numerical results. Moreover, we make a first step toward the convergence analysis of our scheme by proving the convergence of the stochastic particle approximation for the Keller-Segel model with a regularized interaction potential. The proof is based on a BBGKY-like approach for the corresponding particle distribution function.

2008/11/13

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
杉山 由恵 (津田塾大学・学芸学部・数学科)
Aronson-Benilan type estimate and the optimal Hoelder continuity of weak solutions for the 1D degenerate Keller-Segel systems
[ Abstract ]
We consider the Cauchy problem for the 1D Keller-Segel system of degenerate
type (KS)_m with m>1:
u_t= \\partial_x^2 u^m - \\partial_x (u^{q-2} \\partial_x v),
-\\partial_x^2 v + v - u=0.
We establish a uniform estimate from below of partial2xum1.
The corresponding estimate to the porous medium equation is well-known
as an Aronson-Benilan type.
As an application of our Aronson-Benilan type estimate,
we prove the optimal Hoelder continuity of the weak solution u of (KS)_m.
In addition, we find that the positive region D(t):=xinR;u(x,t)>0
of u is monotonically non-decreasing with respect to the time t.

2008/10/16

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Joseph F. Grotowski (University of Queensland)
Two-dimensional harmonic map heat flow versus four-dimensional Yang-Mills heat flow
[ Abstract ]
Harmonic map heat flow and Yang-Mills heat flow are the gradient flows associated to particular energy functionals. In the considered dimension, (i.e. dimension two for the harmonic map heat flow, dimension four for the Yang-Mills heat flow), the associated energy functional is (locally) conformally invariant, that is, the dimension is critical. This leads to a number of interesting phenomena when considering both the functionals and the associated flows. In this talk we discuss qualitative similarities and differences between the flows.

2008/07/10

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
渡辺 達也 (早稲田大学・理工学術院)
Two positive solutions for an inhomogeneous scalar field equation
[ Abstract ]
We consider the following nonlinear elliptic equation:
Deltau+u=g(u)+f(x),xinRN,
where Nge3. When f(x)equiv0, it is known that there is a nontrivial solution for a wide class of nonlinearities. Even though f(x)notequiv0, we can expect the existence of a nontrivial solution if f(x) is small in a suitable sense. Our purpose is to show the existence of two positive solutions via the variational approach when |f|L2 is small. The first solution is characterized as a local minimizer. The second solution will be obtained by the Mountain Pass Method. Since we do not impose any global condition on the nonlinearity, we will need a presice interaction estimate.

2008/06/19

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
谷口 雅治 (東京工業大学大学院情報理工学研究科)
Allen-Cahn方程式における角錐型進行波の一意性と安定性
(The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations)

[ Abstract ]
We study the uniqueness and the asymptotic stability of a pyramidal traveling front in the three-dimensional whole space. For a given admissible pyramid we prove that a pyramidal traveling front is uniquely determined and that it is asymptotically stable under the condition that given perturbations decay at infinity. For this purpose we characterize the pyramidal traveling front as a combination of planar fronts on the lateral surfaces. Moreover we characterize the pyramidal traveling front in another way, that is, we write it as a combination of two-dimensional V-form waves on the edges. This characterization also uniquely determines a pyramidal traveling front.

2008/06/05

16:00-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
齊藤 宣一 (東京大学大学院数理科学研究科)
Keller-Segel系に対する離散化手法
[ Abstract ]
細胞性粘菌の凝集現象を記述するモデルとして広く知られるKeller-Segel(KS)系に対して,講演者の提案した保存的上流差分法および有限要素法を紹介したい.これらスキームは,KS系の解の基本性質である正値性保存と質量保存を厳密に再現し,解が凝集による集中化を起こしても安定な計算が遂行可能である.さらに,離散Lp空間における離散的解析半群の理論を応用して,陽的な誤差評価が導出される.なお当日の講演では,誤差解析等の理論よりは,離散スキームの構成方法や条件の説明に焦点をおきたい.

76-100 / 123

< Previous 12345 Next >