Number Theory Seminar
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Naoki Imai, Shane Kelly |
2024/11/06
17:00-18:00 Room #117 (Graduate School of Math. Sci. Bldg.)
Piotr Pstrągowski (Kyoto University)
The even filtration and prismatic cohomology (English)
Piotr Pstrągowski (Kyoto University)
The even filtration and prismatic cohomology (English)
[ Abstract ]
The even filtration, introduced by Hahn-Raksit-Wilson, is a canonical filtration attached to a commutative ring spectrum which measures its failure to be even. Despite its simple definition, the even filtration recovers many arithmetically important constructions, such as the Adams-Novikov filtration of the sphere or the Bhatt-Morrow-Scholze filtration on topological Hochschild homology, showing that they are all invariants of the commutative ring spectrum alone. I will describe a linear variant of the even filtration which is naturally defined on associative rings as well as joint work with Raksit on the resulting extension of prismatic cohomology to the context of E_2-rings.
The even filtration, introduced by Hahn-Raksit-Wilson, is a canonical filtration attached to a commutative ring spectrum which measures its failure to be even. Despite its simple definition, the even filtration recovers many arithmetically important constructions, such as the Adams-Novikov filtration of the sphere or the Bhatt-Morrow-Scholze filtration on topological Hochschild homology, showing that they are all invariants of the commutative ring spectrum alone. I will describe a linear variant of the even filtration which is naturally defined on associative rings as well as joint work with Raksit on the resulting extension of prismatic cohomology to the context of E_2-rings.