Number Theory Seminar

Seminar information archive ~02/27Next seminarFuture seminars 02/28~

Date, time & place Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Naoki Imai, Shane Kelly


17:00-18:00   Room #117 (Graduate School of Math. Sci. Bldg.)
Daichi Takeuchi (RIKEN)
Quadratic $\ell$-adic sheaf and its Heisenberg group (日本語)
[ Abstract ]
Quadratic Gauss sums are usually defined only for finite fields of odd characteristic. However, it is known that there is a reformulation in which one can uniformly treat the case of even characteristic. In this talk, I will introduce a new class of $\ell$-adic sheaf, which I call quadratic sheaf. This is a sheaf-theoretic enhancement of the reformulation of quadratic Gauss sum, in the sense of the function-sheaf dictionary. After explaining its cohomological properties and consequences, such as a version of Hasse-Davenport relation, I will show that a certain finite Heisenberg group naturally acts on a quadratic sheaf. I will also report various results that can be deduced from this action.