Number Theory Seminar
Seminar information archive ~09/12|Next seminar|Future seminars 09/13~
Date, time & place | Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Naoki Imai, Shane Kelly |
2023/05/17
17:00-18:00 Room #117 (Graduate School of Math. Sci. Bldg.)
Ken Sato (Tokyo Institute of Technology)
Indecomposable higher Chow cycles on Kummer surfaces (日本語)
Ken Sato (Tokyo Institute of Technology)
Indecomposable higher Chow cycles on Kummer surfaces (日本語)
[ Abstract ]
The higher Chow group $\mathrm{CH}^p(X,q)$ introduced by Bloch is a generalization of the classical Chow groups. It satisfies many interesting properties, but its structure is still mysterious for almost all varieties when $p$ is greater than 1. In this talk, I will explain the explicit construction of higher Chow cycles in $\mathrm{CH}^2(X,1)$ on a family of Kummer surfaces. By computing their images under the Beilinson regulator map, in very general cases, these cycles generate at least rank 18 subgroup of $\mathrm{CH}^2(X,1)_{\mathrm{ind}}$, which is the quotient of $\mathrm{CH}^2(X,1)$ by the images of the intersection product maps. To compute the images under the regulator map, we use automorphisms of the family and the explicit description of the action of the automorphisms on the Picard-Fuchs differential equations of the family.
The higher Chow group $\mathrm{CH}^p(X,q)$ introduced by Bloch is a generalization of the classical Chow groups. It satisfies many interesting properties, but its structure is still mysterious for almost all varieties when $p$ is greater than 1. In this talk, I will explain the explicit construction of higher Chow cycles in $\mathrm{CH}^2(X,1)$ on a family of Kummer surfaces. By computing their images under the Beilinson regulator map, in very general cases, these cycles generate at least rank 18 subgroup of $\mathrm{CH}^2(X,1)_{\mathrm{ind}}$, which is the quotient of $\mathrm{CH}^2(X,1)$ by the images of the intersection product maps. To compute the images under the regulator map, we use automorphisms of the family and the explicit description of the action of the automorphisms on the Picard-Fuchs differential equations of the family.