Algebraic Geometry Seminar
Seminar information archive ~09/13|Next seminar|Future seminars 09/14~
Date, time & place | Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu |
2023/02/17
10:00-11:30 Room #123 (Graduate School of Math. Sci. Bldg.)
The 3rd lecture of series talks
Chenyang Xu (Princeton University)
K-stability of Fano varieties. ( English)
The 3rd lecture of series talks
Chenyang Xu (Princeton University)
K-stability of Fano varieties. ( English)
[ Abstract ]
The notion of K-stability of Fano varieties was first introduced to characterize the existence of Kahler-Einstein metric. Recently, a purely algebro-geometric theory has been developed and it has yielded many striking results, such as the solution of the Yau-Tian-Donaldson Conjecture for all Fano varieties, as well as the construction of a projective moduli scheme, called K-moduli, parametrizing K-polystable Fano varieties.
In this lecture series, I will survey the recent progress. The first two lectures will be devoted to explain the evolution of algebraic geometer’s understanding of various aspects of the notion of K-stability. The Lecture 3 and 4 will be devoted to discuss the construction of the K-moduli space.
The notion of K-stability of Fano varieties was first introduced to characterize the existence of Kahler-Einstein metric. Recently, a purely algebro-geometric theory has been developed and it has yielded many striking results, such as the solution of the Yau-Tian-Donaldson Conjecture for all Fano varieties, as well as the construction of a projective moduli scheme, called K-moduli, parametrizing K-polystable Fano varieties.
In this lecture series, I will survey the recent progress. The first two lectures will be devoted to explain the evolution of algebraic geometer’s understanding of various aspects of the notion of K-stability. The Lecture 3 and 4 will be devoted to discuss the construction of the K-moduli space.