Seminar on Geometric Complex Analysis

Seminar information archive ~10/09Next seminarFuture seminars 10/10~

Date, time & place Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama

2021/11/15

10:30-12:00   Online
Katsusuke Nabeshima (Tokyo University of Science)
Computing logarithmic vector fields along an isolated singularity and Bruce-Roberts Milnor ideals (Japanese)
[ Abstract ]
The concept of logarithmic vector fields along a hypersurface, introduced by K. Saito (1980), is of considerable importance in singularity theory.
Logarithmic vector fields have been extensively studied and utilized by several researchers. A. G. Aleksandrov (1986) and J. Wahl (1983) considered quasihomogeneous complete intersection cases and gave independently, among other things, a closed formula of generators of logarithmic vector fields. However, there is no closed formula for generators of logarithmic vector fields, even for semi-quasihomogeneous hypersurface isolated singularity cases. Many problems related with logarithmic vector fields remain still unsolved, especially for non-quasihomogeneous cases.
Bruce-Roberts Milnor number was introduced in 1988 by J. W. Bruce and R. M. Roberts as a generalization of the Milnor number, a multiplicity of an isolated critical point of a holomorphic function germ. This number is defined for a critical point of a holomorphic function on a singular variety in terms of logarithmic vector fields. Recently, Bruce-Robert Milnor numbers are investigated by several researchers. However, many problems related with Bruce-Roberts Milnor numbers remain unsolved.
In this talk, we consider logarithmic vector fields along a hypersurface with an isolated singularity. We present methods to study complex analytic properties of logarithmic vector fields and illustrate an algorithm for computing logarithmic vector fields. As an application of logarithmic vector fields, we consider Bruce-Roberts Milnor numbers in the context of symbolic computation.
[ Reference URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB