Algebraic Geometry Seminar
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2019/10/30
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Andrew Macpherson (IPMU)
A Tannakian perspective on rigid analytic geometry (English)
Andrew Macpherson (IPMU)
A Tannakian perspective on rigid analytic geometry (English)
[ Abstract ]
Raynaud's conception of analytic geometry contends that the category of analytic spaces over a non-Archimedean field is a (suitably "geometric") localisation of the category of formal schemes over the ring of integers at a class of modifications "along the central fibre". Unfortunately, as with all existing presentations of non-Archimedean geometry, this viewpoint is confounded by a proliferation of technical difficulties if one does not impose absolute finiteness conditions on the formal schemes under consideration.
I will argue that by combining Raynaud's idea with a Tannakian perspective which prioritises the module category, we can obtain a reasonable framework for rigid analytic geometry with no absolute finiteness hypotheses whatsoever, but which has descent for finitely presented modules.
Raynaud's conception of analytic geometry contends that the category of analytic spaces over a non-Archimedean field is a (suitably "geometric") localisation of the category of formal schemes over the ring of integers at a class of modifications "along the central fibre". Unfortunately, as with all existing presentations of non-Archimedean geometry, this viewpoint is confounded by a proliferation of technical difficulties if one does not impose absolute finiteness conditions on the formal schemes under consideration.
I will argue that by combining Raynaud's idea with a Tannakian perspective which prioritises the module category, we can obtain a reasonable framework for rigid analytic geometry with no absolute finiteness hypotheses whatsoever, but which has descent for finitely presented modules.