Number Theory Seminar
Seminar information archive ~09/18|Next seminar|Future seminars 09/19~
Date, time & place | Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Naoki Imai, Shane Kelly |
2019/04/30
17:00-18:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Jean-Francois Dat (Sorbonne University)
Moduli space of l-adic Langlands parameters and the stable Bernstein center (English)
Jean-Francois Dat (Sorbonne University)
Moduli space of l-adic Langlands parameters and the stable Bernstein center (English)
[ Abstract ]
Motivated by the description of the integral l-adic cohomology of certain Shimura varieties in middle degree, Emerton and Helm have conjectured the existence of a certain local Langlands correspondence for l-adic families of n-dimensional Galois representations. The proof of this conjecture by Helm and Moss relies on a beautiful isomorphism between the ring of functions of the moduli space of l-adic representations and the integral Bernstein center of GL_n(F). We will present a work in progress with Helm, Korinczuk and Moss towards a generalization of this result for arbitrary (tamely ramified) reductive groups.
Motivated by the description of the integral l-adic cohomology of certain Shimura varieties in middle degree, Emerton and Helm have conjectured the existence of a certain local Langlands correspondence for l-adic families of n-dimensional Galois representations. The proof of this conjecture by Helm and Moss relies on a beautiful isomorphism between the ring of functions of the moduli space of l-adic representations and the integral Bernstein center of GL_n(F). We will present a work in progress with Helm, Korinczuk and Moss towards a generalization of this result for arbitrary (tamely ramified) reductive groups.