Tokyo Probability Seminar
Seminar information archive ~09/10|Next seminar|Future seminars 09/11~
Date, time & place | Monday 16:00 - 17:30 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Makiko Sasada, Shuta Nakajima |
2018/12/10
17:00-18:00 Room # (Graduate School of Math. Sci. Bldg.)
Nikolaos Zygouras (University of Warwick)
Random polymer models and classical groups (ENGLISH)
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/zygouras/
Nikolaos Zygouras (University of Warwick)
Random polymer models and classical groups (ENGLISH)
[ Abstract ]
The relation between polymer models at zero temperature and characters of the general linear group GL_n(R) has been known since the first breakthroughs in the field around the KPZ universality through the works of Johansson, Baik, Rains, Okounkov and others. Later on, geometric liftings of the GL_n(R) characters appeared in the study of positive temperature polymer models in the form of GL_n(R)-Whittaker functions. In this talk I will describe joint works with E. Bisi where we have established that Whittaker functions associated to the orthogonal group SO_{2n+1}(R) can be used to describe laws of positive temperature polymers when their end point is free to lie on a line. Going back to zero temperature, we will also see that characters of other classical groups such as SO_{2n+1}(R); Sp_{2n}(R); SO_{2n}(R) do play a role in describing laws of polymers in various geometries. This occurence might be surprising given the length of time these models have been studied.
[ Reference URL ]The relation between polymer models at zero temperature and characters of the general linear group GL_n(R) has been known since the first breakthroughs in the field around the KPZ universality through the works of Johansson, Baik, Rains, Okounkov and others. Later on, geometric liftings of the GL_n(R) characters appeared in the study of positive temperature polymer models in the form of GL_n(R)-Whittaker functions. In this talk I will describe joint works with E. Bisi where we have established that Whittaker functions associated to the orthogonal group SO_{2n+1}(R) can be used to describe laws of positive temperature polymers when their end point is free to lie on a line. Going back to zero temperature, we will also see that characters of other classical groups such as SO_{2n+1}(R); Sp_{2n}(R); SO_{2n}(R) do play a role in describing laws of polymers in various geometries. This occurence might be surprising given the length of time these models have been studied.
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/zygouras/