Number Theory Seminar
Seminar information archive ~09/13|Next seminar|Future seminars 09/14~
Date, time & place | Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Naoki Imai, Shane Kelly |
2011/07/27
16:00-18:15 Room #123 (Graduate School of Math. Sci. Bldg.)
Takeshi Saito (University of Tokyo) 16:00-17:00
Discriminants and determinant of a hypersurface of even dimension (ENGLISH)
Multiplicities of discriminants (ENGLISH)
Takeshi Saito (University of Tokyo) 16:00-17:00
Discriminants and determinant of a hypersurface of even dimension (ENGLISH)
[ Abstract ]
The determinant of the cohomology of a smooth hypersurface
of even dimension as a quadratic character of the absolute
Galois group is computed by the discriminant of the de Rham
cohomology. They are also computed by the discriminant of a
defining polynomial. We determine the sign involved by testing
the formula for the Fermat hypersurfaces.
This is a joint work with J-P. Serre.
Dennis Eriksson (University of Gothenburg) 17:15-18:15The determinant of the cohomology of a smooth hypersurface
of even dimension as a quadratic character of the absolute
Galois group is computed by the discriminant of the de Rham
cohomology. They are also computed by the discriminant of a
defining polynomial. We determine the sign involved by testing
the formula for the Fermat hypersurfaces.
This is a joint work with J-P. Serre.
Multiplicities of discriminants (ENGLISH)
[ Abstract ]
The discriminant of a homogenous polynomial is another homogenous
polynomial in the coefficients of the polynomial, which is zero
if and only if the corresponding hypersurface is singular. In
case the coefficients are in a discrete valuation ring, the
order of the discriminant (if non-zero) measures the bad
reduction. We give some new results on this order, and in
particular tie it to Bloch's conjecture/the Kato-T.Saito formula
on equality of localized Chern classes and Artin conductors. We
can precisely compute all the numbers in the case of ternary
forms, giving a partial generalization of Ogg's formula for
elliptic curves.
The discriminant of a homogenous polynomial is another homogenous
polynomial in the coefficients of the polynomial, which is zero
if and only if the corresponding hypersurface is singular. In
case the coefficients are in a discrete valuation ring, the
order of the discriminant (if non-zero) measures the bad
reduction. We give some new results on this order, and in
particular tie it to Bloch's conjecture/the Kato-T.Saito formula
on equality of localized Chern classes and Artin conductors. We
can precisely compute all the numbers in the case of ternary
forms, giving a partial generalization of Ogg's formula for
elliptic curves.