Number Theory Seminar

Seminar information archive ~05/22Next seminarFuture seminars 05/23~

Date, time & place Wednesday 17:00 - 18:00 117Room #117 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Naoki Imai, Shane Kelly

2010/05/12

17:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Makoto Matsumoto (University of Tokyo)
Differences between
Galois representations in outer-automorphisms
of the fundamental groups and those in automorphisms, implied by
topology of moduli spaces (ENGLISH)
[ Abstract ]
Fix a prime l. Let C be a proper smooth geometrically connected curve over a number field K, and x be its closed point. Let Π denote the pro-l completion of the geometric fundamental group of C with geometric base point over x. We have two non-abelian Galois representations:

ρA : Galk(x) → Aut(Π),ρO : GalK → Out(Π).

Our question is: in the natural inclusion Ker(ρA) ⊂ Ker(ρO) ∩ Galk(x), whether the equality holds or not. Theorem: Assume that g ≥ 3, l divides 2g -2. Then, there are infinitely many pairs (C, K) with the following property. If l does not divide the extension degree [k(x): K], then Ker(ρA) = (Ker(ρO) ∩ Galk(x)) holds.

This is in contrast to the case of the projective line minus three points and its canonical tangential base points, where the equality holds (a result of Deligne and Ihara).

There are two ingredients in the proof: (1) Galois representations often contain the image of the geometric monodromy (namely, the mapping class group) [M-Tamagawa 2000] (2) A topological result [S. Morita 98] [Hain-Reed 2000] on the cohomological obstruction of lifting the outer action of the mapping class group to automorphisms.

(This lecture is held as `Arithmetic Geometry Seminar Tokyo-Paris' and it is transmitted to IHES by the internet.)