PDE Real Analysis Seminar
Seminar information archive ~10/09|Next seminar|Future seminars 10/10~
Date, time & place | Tuesday 10:30 - 11:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|
2010/04/28
10:30-11:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Marcus Wunsch (Kyoto University
)
GLOBAL AND SINGULAR SOLUTIONS TO SOME
HYDRODYNAMIC EVOLUTION EQUATIONS
Marcus Wunsch (Kyoto University
)
GLOBAL AND SINGULAR SOLUTIONS TO SOME
HYDRODYNAMIC EVOLUTION EQUATIONS
[ Abstract ]
The two-component Hunter-Saxton system is a recently derived system of evolution equations modeling, e.g., the nonlinear dynamics of nondissipative dark matter and the propagation of orientation waves in nematic liquid crystals. It is imbedded into a parameterized family of systems called the generalized Hunter-Saxton (2HS) system [2] reducing, if one component is omitted, to the generalized Proudman-Johnson(gPJ) equation [1] modeling three-dimensional vortex dynamics.
After demonstrating, by means of Kato's semigroup theory, the local-in-time existence of classical solutions, the blow-up scenarios for the 2HS system and the gPJ equation are described. The explicit construction of weak dissipative solutions for both models is discussed in detail.
Finally, global existence in time of these weak solutions is proved.
The two-component Hunter-Saxton system is a recently derived system of evolution equations modeling, e.g., the nonlinear dynamics of nondissipative dark matter and the propagation of orientation waves in nematic liquid crystals. It is imbedded into a parameterized family of systems called the generalized Hunter-Saxton (2HS) system [2] reducing, if one component is omitted, to the generalized Proudman-Johnson(gPJ) equation [1] modeling three-dimensional vortex dynamics.
After demonstrating, by means of Kato's semigroup theory, the local-in-time existence of classical solutions, the blow-up scenarios for the 2HS system and the gPJ equation are described. The explicit construction of weak dissipative solutions for both models is discussed in detail.
Finally, global existence in time of these weak solutions is proved.