Tuesday Seminar on Topology
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2010/01/26
17:00-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
栗林 勝彦 (信州大学)
On the (co)chain type levels of spaces
栗林 勝彦 (信州大学)
On the (co)chain type levels of spaces
[ Abstract ]
Avramov, Buchweitz, Iyengar and Miller have introduced
the notion of the level for an object of a triangulated category.
The invariant measures the number of steps to build the given object
out of some fixed object with triangles.
Using this notion in the derived category of modules over a (co)chain
algebra,
we define a new topological invariant, which is called
the (co)chain type level of a space.
In this talk, after explaining fundamental properties of the invariant,
I describe the chain type level of the Borel construction
of a homogeneous space as a computational example.
I will also relate the chain type level of a space to algebraic
approximations of the L.-S. category due to Kahl and to
the original L.-S. category of a map.
Avramov, Buchweitz, Iyengar and Miller have introduced
the notion of the level for an object of a triangulated category.
The invariant measures the number of steps to build the given object
out of some fixed object with triangles.
Using this notion in the derived category of modules over a (co)chain
algebra,
we define a new topological invariant, which is called
the (co)chain type level of a space.
In this talk, after explaining fundamental properties of the invariant,
I describe the chain type level of the Borel construction
of a homogeneous space as a computational example.
I will also relate the chain type level of a space to algebraic
approximations of the L.-S. category due to Kahl and to
the original L.-S. category of a map.