Number Theory Seminar

Seminar information archive ~03/29Next seminarFuture seminars 03/30~

Date, time & place Wednesday 17:00 - 18:00 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Naoki Imai, Shane Kelly


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
Antoine Chambert-Loir (Universite de Rennes 1)
Equidistribution theorems in Arakelov geometry
[ Abstract ]
The proof of Bogomolov's conjecture by Zhang made a crucial use
of an equidistribution property for the Galois orbits of points of small
heights in Abelian varieties defined over number fields.
Such an equidistribution property is proved using a method invented
by Szpiro, Ullmo and Zhang, and makes use of Arakelov theory.
This equidistribution theorem takes place in the complex torus
associated to the Abelian variety. I will show how a similar
equidistribution theorem can be proven for the p-adic topology ;
we have to use Berkovich space. Thanks to recent results of Yuan
about `big line bundles' in Arakelov geometry, the situation
is now very well understood.