Applied Analysis

Seminar information archive ~09/10Next seminarFuture seminars 09/11~

Date, time & place Thursday 16:00 - 17:30 002Room #002 (Graduate School of Math. Sci. Bldg.)

2006/11/21

16:30-17:30   Room #122 (Graduate School of Math. Sci. Bldg.)
Henrik SHAHGHOLIAN (王立工科大学、ストックホルム)
Composite membrane and the structure of the singular set
[ Abstract ]
In this talk we present our study of the behavior of the singular set
$\\{u=|\\nabla u| =0\\}$ for solutions $u$ to the free boundary problem
$$
\\Delta u = f\\chi_{\\{u\\geq 0\\} } -g\\chi_{\\{u<0\\}},
$$
where $f$ and $g$ are H\\"older continuous functions, $f$ is positive and $f+g$ is negative. Such problems arise in an eigenvalue optimization for composite membranes.
We show that if for a singular point $z$ there are $r_0>0$, and $c_0>0$ such that the density assumption
$|\\{u< 0\\}\\cap B_r(z)|\\geq c_0 r2 \\forall r< r_0$
holds, then $z$ is isolated.