IYAMA, Osamu

Algebra, Ring theory, Representation theory
Research interests
Representation theory of orders
Current research

My research subjects are rings (e.g. quivers, orders, commutative rings, dg categories), their representations, associated categorical structures (e.g. module category, derived category, singularity category, cluster category) and their applications (e.g. cluster algebra, non-commutative resolutions of singularities).

Selected publications
  1. M. Herschend, O. Iyama, H. Minamoto, S. Oppermann, Representation theory of Geigle-Lenzing complete intersections, to appear in Mem. Amer. Math. Soc.
  2. O. Iyama, Tilting Cohen-Macaulay representations, Proceedings of the International Congress of Mathematicians--Rio de Janeiro 2018. Vol. II. Invited lectures, 125--162, World Sci. Publ., Hackensack, NJ, 2018.
  3. O. Iyama, M. Wemyss, Maximal modifications and Auslander-Reiten duality for non-isolated singularities, Invent. Math. 197 (2014), no. 3, 521--586.
  4. T. Adachi, O. Iyama, I. Reiten, $τ$-tilting theory, Compos. Math. 150 (2014), no. 3, 415--452.
  5. O. Iyama, Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117--168.
  6. O. Iyama, Auslander correspondence, Adv. Math. 210 (2007), no. 1, 51--82.
  7. O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22--50.
  8. O. Iyama, Finiteness of Representation dimension, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1011--1014.

Memberships, Awards and


The Mathematical Society of Japan

2019 Inoue Prize for Science of Inoue Foundation for Science

2011 JSPS Prize of Japan Society of Promotion of Science

2010 Spring Prize of the Mathematical Society of Japan

2008 Algebra Prize of the Mathematical Society of Japan

2007 ICRA (International Conference on Representations of Algebras) Award

2001 Takebe Katahiro Prize of the Mathematical Society of Japan

Mathematische Zeitschrift, Nagoya Mathematical Journal (editor)