Tuesday Seminar on Topology
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2024/10/29
17:00-18:30 Room #ハイブリッド開催/056 (Graduate School of Math. Sci. Bldg.)
Pre-registration required. See our seminar webpage.
Takahito Naito (Nippon Institute of Technology)
Cartan calculus in string topology (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
Pre-registration required. See our seminar webpage.
Takahito Naito (Nippon Institute of Technology)
Cartan calculus in string topology (JAPANESE)
[ Abstract ]
The homology of the free loop space of a closed oriented manifold (called the loop homology) has rich algebraic structures. In the theory of string topology due to Chas and Sullivan, it is well known that the loop homology has a structure of Gerstenhabar algebras with a multiplication called the loop product and a Lie bracket called the loop bracket. On the other hand, Kuribayashi, Wakatsuki, Yamaguchi and the speaker gave a Cartan calculus on the loop homology, which is a geometric description of a homotopy Cartan calculus in the sense of Fiorenza and Kowalzig on the Hochschild homology.
In this talk, we will investigate a relationship between the string topology operations and the Cartan calculus. Especially, we will show that the Cartan calculus can be described by using the loop product and the loop bracket with rational coefficients. As an application, the nilpotency of some loop homology classes are determined.
[ Reference URL ]The homology of the free loop space of a closed oriented manifold (called the loop homology) has rich algebraic structures. In the theory of string topology due to Chas and Sullivan, it is well known that the loop homology has a structure of Gerstenhabar algebras with a multiplication called the loop product and a Lie bracket called the loop bracket. On the other hand, Kuribayashi, Wakatsuki, Yamaguchi and the speaker gave a Cartan calculus on the loop homology, which is a geometric description of a homotopy Cartan calculus in the sense of Fiorenza and Kowalzig on the Hochschild homology.
In this talk, we will investigate a relationship between the string topology operations and the Cartan calculus. Especially, we will show that the Cartan calculus can be described by using the loop product and the loop bracket with rational coefficients. As an application, the nilpotency of some loop homology classes are determined.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html