Tuesday Seminar on Topology
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2024/01/23
17:00-18:00 Room #ハイブリッド開催/056 (Graduate School of Math. Sci. Bldg.)
Pre-registration required. See our seminar webpage.
Gefei Wang (The University of Tokyo)
On the rational cohomology of spin hyperelliptic mapping class groups (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
Pre-registration required. See our seminar webpage.
Gefei Wang (The University of Tokyo)
On the rational cohomology of spin hyperelliptic mapping class groups (JAPANESE)
[ Abstract ]
Let $G$ be the subgroup $S_{n−q} \times S_q$ of the $n$-th symmetric group $S_n$ for $n-q \ge q$. In this talk, we study the $G$-invariant part of the rational cohomology group of the pure braid group $P_n$. The invariant part $H^*(P_n)^G$ includes the rational cohomology of a spin hyperelliptic mapping class group of genus $g$ as a subalgebra when $n=2g+2$. Based on the study of Lehrer-Solomon, we prove that they are independent of n and q in degree $* \le q-1$. We also give a formula to calculate the dimension of $H^* (P_n)^G$ and calculate it in all degree for $q \le 3$.
[ Reference URL ]Let $G$ be the subgroup $S_{n−q} \times S_q$ of the $n$-th symmetric group $S_n$ for $n-q \ge q$. In this talk, we study the $G$-invariant part of the rational cohomology group of the pure braid group $P_n$. The invariant part $H^*(P_n)^G$ includes the rational cohomology of a spin hyperelliptic mapping class group of genus $g$ as a subalgebra when $n=2g+2$. Based on the study of Lehrer-Solomon, we prove that they are independent of n and q in degree $* \le q-1$. We also give a formula to calculate the dimension of $H^* (P_n)^G$ and calculate it in all degree for $q \le 3$.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html