Tuesday Seminar on Topology
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2020/10/06
17:30-18:30 Online
Pre-registration required. See our seminar webpage.
Shinichiroh Matsuo (Nagoya University)
The Atiyah-Patodi-Singer index of manifolds with boundary and domain-wall fermions (JAPANESE)
https://zoom.us/meeting/register/tJcqdO6pqz0pGNbwpZOpG-o2h4xJwmpma3zL
Pre-registration required. See our seminar webpage.
Shinichiroh Matsuo (Nagoya University)
The Atiyah-Patodi-Singer index of manifolds with boundary and domain-wall fermions (JAPANESE)
[ Abstract ]
We introduce a mathematician-friendly formulation of the physicist-friendly derivation of the Atiyah-Patodi-Singer index.
In a previous work, motivated by the study of lattice gauge theory, we derived a formula expressing the Atiyah-Patodi-Singer index in terms of the eta invariant of “domain-wall fermion Dirac operators” when the base manifold is a flat 4-dimensional torus. Now we generalise this formula to any even dimensional closed Riemannian manifolds, and prove it mathematically rigorously. Our proof uses a Witten localisation argument combined with a devised embedding into a cylinder of one dimension higher. Our viewpoint sheds some new light on the interplay among the Atiyah-Patodi-Singer boundary condition, domain-wall fermions, and edge modes.
This talk is based on a joint paper arXiv:1910.01987, to appear in CMP, with H. Fukaya, M. Furuta, T. Onogi, S. Yamaguchi, and M. Yamashita.
[ Reference URL ]We introduce a mathematician-friendly formulation of the physicist-friendly derivation of the Atiyah-Patodi-Singer index.
In a previous work, motivated by the study of lattice gauge theory, we derived a formula expressing the Atiyah-Patodi-Singer index in terms of the eta invariant of “domain-wall fermion Dirac operators” when the base manifold is a flat 4-dimensional torus. Now we generalise this formula to any even dimensional closed Riemannian manifolds, and prove it mathematically rigorously. Our proof uses a Witten localisation argument combined with a devised embedding into a cylinder of one dimension higher. Our viewpoint sheds some new light on the interplay among the Atiyah-Patodi-Singer boundary condition, domain-wall fermions, and edge modes.
This talk is based on a joint paper arXiv:1910.01987, to appear in CMP, with H. Fukaya, M. Furuta, T. Onogi, S. Yamaguchi, and M. Yamashita.
https://zoom.us/meeting/register/tJcqdO6pqz0pGNbwpZOpG-o2h4xJwmpma3zL