Tuesday Seminar on Topology
Seminar information archive ~04/30|Next seminar|Future seminars 05/01~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2019/10/01
17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Jun Murakami (Waseda University)
Quantized SL(2) representations of knot groups (JAPANESE)
Jun Murakami (Waseda University)
Quantized SL(2) representations of knot groups (JAPANESE)
[ Abstract ]
Let K be a knot and G be a group. The representation space of K for the group G means the space of homomorphisms from the knot group to G and is defined by using the group ring C[G], where C[G] is the ring of functions on G and has a commutative Hopf algebra structure. This construction can be generalized to any commutative Hopf algebras.
In this talk, we extend this construction to any braided Hopf algebras with braided commutativity. A typical example is BSL(2), which is the braided SL(2) introduced by S. Majid. Applying the above construction to BSL(2), we get the space of BSL(2) representations, which provides a quantization of SL(2) representations of a knot. This is joint work with Roloand van der Veen.
Let K be a knot and G be a group. The representation space of K for the group G means the space of homomorphisms from the knot group to G and is defined by using the group ring C[G], where C[G] is the ring of functions on G and has a commutative Hopf algebra structure. This construction can be generalized to any commutative Hopf algebras.
In this talk, we extend this construction to any braided Hopf algebras with braided commutativity. A typical example is BSL(2), which is the braided SL(2) introduced by S. Majid. Applying the above construction to BSL(2), we get the space of BSL(2) representations, which provides a quantization of SL(2) representations of a knot. This is joint work with Roloand van der Veen.