Tuesday Seminar on Topology
Seminar information archive ~04/30|Next seminar|Future seminars 05/01~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2018/01/23
18:00-19:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Junha Tanaka (The University of Tokyo)
Wrapping projections and decompositions of Keinian groups (JAPANESE)
Junha Tanaka (The University of Tokyo)
Wrapping projections and decompositions of Keinian groups (JAPANESE)
[ Abstract ]
Let $S$ be a closed surface of genus $g ¥geq 2$. The deformation space $AH(S)$ consists of (conjugacy classes of) discrete faithful representations $\rho:\pi_{1}(S) \to PSL_{2}(\mathbb{C})$.
McMullen, and Bromberg and Holt showed that $AH(S)$ can self-bump, that is, the interior of $AH(S)$ has the self-intersecting closure.
Both of them demonstrated the existence of self-bumping under the exisetence of a non-trivial wrapping projections from an algebraic limits to a geometric limits which wraps an annulus cusp into a torus cusp.
In this talk, given a representation $\rho$ at the boundary of $AH(S)$, we characterize a wrapping projection to a geometric limit associated to $\rho$, by the information of the actions of decomposed Kleinian groups of the image of $\rho$.
Let $S$ be a closed surface of genus $g ¥geq 2$. The deformation space $AH(S)$ consists of (conjugacy classes of) discrete faithful representations $\rho:\pi_{1}(S) \to PSL_{2}(\mathbb{C})$.
McMullen, and Bromberg and Holt showed that $AH(S)$ can self-bump, that is, the interior of $AH(S)$ has the self-intersecting closure.
Both of them demonstrated the existence of self-bumping under the exisetence of a non-trivial wrapping projections from an algebraic limits to a geometric limits which wraps an annulus cusp into a torus cusp.
In this talk, given a representation $\rho$ at the boundary of $AH(S)$, we characterize a wrapping projection to a geometric limit associated to $\rho$, by the information of the actions of decomposed Kleinian groups of the image of $\rho$.