Tuesday Seminar on Topology
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2009/01/13
16:30-17:30 Room #002 (Graduate School of Math. Sci. Bldg.)
山下 温 (東京大学大学院数理科学研究科)
Compactification of the homeomorphism group of a graph
山下 温 (東京大学大学院数理科学研究科)
Compactification of the homeomorphism group of a graph
[ Abstract ]
Topological properties of homeomorphism groups, especially of finite-dimensional manifolds,
have been of interest in the area of infinite-dimensional manifold topology.
For a locally finite graph $\\Gamma$ with countably many components,
the homeomorphism group $\\mathcal{H}(\\Gamma)$
and its identity component $\\mathcal{H}_+(\\Gamma)$ are topological groups
with respect to the compact-open topology. I will define natural compactifications
$\\overline{\\mathcal{H}}(\\Gamma)$ and
$\\overline{\\mathcal{H}}_+(\\Gamma)$ of these groups and describe the
topological type of the pair $(\\overline{\\mathcal{H}}_+(\\Gamma), \\mathcal{H}_+(\\Gamma))$
using the data of $\\Gamma$. I will also discuss the topological structure of
$\\overline{\\mathcal{H}}(\\Gamma)$ where $\\Gamma$ is the circle.
Topological properties of homeomorphism groups, especially of finite-dimensional manifolds,
have been of interest in the area of infinite-dimensional manifold topology.
For a locally finite graph $\\Gamma$ with countably many components,
the homeomorphism group $\\mathcal{H}(\\Gamma)$
and its identity component $\\mathcal{H}_+(\\Gamma)$ are topological groups
with respect to the compact-open topology. I will define natural compactifications
$\\overline{\\mathcal{H}}(\\Gamma)$ and
$\\overline{\\mathcal{H}}_+(\\Gamma)$ of these groups and describe the
topological type of the pair $(\\overline{\\mathcal{H}}_+(\\Gamma), \\mathcal{H}_+(\\Gamma))$
using the data of $\\Gamma$. I will also discuss the topological structure of
$\\overline{\\mathcal{H}}(\\Gamma)$ where $\\Gamma$ is the circle.