Tokyo Probability Seminar

Seminar information archive ~05/01Next seminarFuture seminars 05/02~

Date, time & place Monday 16:00 - 17:30 126Room #126 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Makiko Sasada, Shuta Nakajima, Masato Hoshino

2024/07/29

15:00-17:50   Room #122 (Graduate School of Math. Sci. Bldg.)
Lectures start earlier. The classroom is 122. No teatime today.
Yoshinori Kamijima (Toyo University) 15:00-15:50
時空間でのランダムカレント表現に基づくIsing模型に対するレース展開の導出 (日本語)
[ Abstract ]
レース展開は平均場臨界現象を解析する為の強力な手法の一つである.レース展開を用いると,例えば臨界点の漸近展開が得られ,それは現在までに自己回避歩行・無向パーコレーション・有効パーコレーション・コンタクトプロセス等で示されている.本研究の目的は,量子Ising模型に対するレース展開を導出し,それによって量子Ising模型の臨界点の評価を得ることである.頂点集合 $\Lambda$ 上のスピン配置 $\vec{\sigma} \in \{-1, +1\}^{\Lambda}$ がGibbs分布に従って実現されるという数理模型を古典Ising模型という.量子Ising模型とは,その古典Ising模型のスピン配置空間の代わりに対応するテンソル空間 $(\mathbb{C}^2)^{\otimes \Lambda}$ を考え,更に強さ $q$ の横磁場を印加した数理模型である.横磁場の為に温度のみの時とは異なる種の相転移が起こる.また,$d$ 次元量子Ising模型は空間に時間と呼ばれる別の座標軸を加えた時空間を考えることによって,$d+1$ 次元の特殊な古典Ising模型と等価であることが知られている.

本講演では量子Ising模型に対するレース展開を導出する試みの一端として,古典Ising模型 ($q=0$ の場合の量子Ising模型) に対する新しいレース展開の導出方法を解説する.それ自体はランダムカレント表現を用いて [Sakai (2007) \textit{Commun. Math. Phys.}] [Sakai (2022) \textit{Commun. Math. Phys.}] で既に得られている.ランダムカレント表現は簡単に言えばスピンの言葉をボンドの言葉に翻訳する手法の一種である.本講演では,量子Ising模型で使われる,時空間でのランダムカレント表現 [Bj\"{o}rnberg and Grimmett (2009) \textit{J. Stat. Phys.}] [Crawford and Ioffe (2010) \textit{Commun. Math. Phys.}] を用いる点が先行研究と異なる.横磁場有り ($q > 0$) の場合の研究は現在進行中である.時間に余裕があれば,その現状についても言及する.
本研究は坂井哲(北海道大学)との共同研究である.
Kohei Sasaya (The University of Tokyo) 16:00-16:50
強局所なp-エネルギーに付随するp-エネルギー測度の構成について (日本語)
[ Abstract ]
本講演におけるp-エネルギー(E,F)とは, Dirichlet形式のL^p空間における対応物のことを指す. 近年, このp-エネルギーはフラクタル上の(1,p)-Sobolev空間の対応物を考えるという動機のもとで研究が進められている.
本講演では, 幾何的な対称性や自己相似性といった仮定を底空間に課さない, 強局所, 正則なp-エネルギーに対応するp-エネルギー測度(Dirichlet形式でのエネルギー測度に対応するもの)の構成について述べる. さらに, セミノルムE^(1/p)で定義される商ノルム空間F/~が可分であれば, このエネルギー測度に付随する非対称p次形式がチェインルール, Leibnizルールを満たすことを示す.
Takumu Ooi (Tokyo University of Science) 17:00-17:50
Liouville Brown運動とLiouville Cauchy過程 (日本語)
[ Abstract ]
2次元Brown運動をLiouville測度によって時間変更してできた確率過程であるLiouville Brown運動は、Liouville量子重力と呼ばれるランダム曲面上の自然な拡散過程である。また、その1次元の対応物としてLioville Cauchy過程がBaverez(2021)によって構成されている。本講演では、Liouville Brown運動とLioville Cauchy過程との関係や、これらへの収束などの性質について説明する。