Number Theory Seminar

Seminar information archive ~12/05Next seminarFuture seminars 12/06~

Date, time & place Wednesday 17:00 - 18:00 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Naoki Imai, Yoichi Mieda

Seminar information archive


13:00-18:00   Room #002 (Graduate School of Math. Sci. Bldg.)
Olivier Brinon (Paris北大学) 13:00-14:00
B_dR-representations and Higgs bundles
Henrik Russell (Duisburg-Essen大学) 14:15-15:15
Generalized Albanese and duality
Thomas Geisser (南California大学) 15:45-16:45
Negative K-theory, homotopy invariance and regularity
[ Abstract ]
The topic of my talk are two classical conjectures in K-theory:
Weibel's conjecture states that a scheme of dimension d
has no K-groups below degree -d, and Vorst's conjecture
states that homotopy invariance of the K-theory of rings
implies that the ring must be regular.
I will give an easy introduction to the conjectures, and discuss
recent progress.
Fabien Trihan (Nottingham大学) 17:00-18:00
On Iwasawa theory for abelian varieties over function fields of positive characteristic


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
Valentina Di Proietto (Padova大学)
On p-adic differential equation on semi-stable varieties


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
近藤 智 (東京大学数物連携宇宙研究機構)


16:30-18:45   Room #117 (Graduate School of Math. Sci. Bldg.)
服部 新 (北海道大学大学院理学研究院) 16:30-17:30
On a ramification bound of semi-stable torsion representations over a local field
朝倉 政典 (北海道大学大学院理学研究院) 17:45-18:45
[ Abstract ]


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
坂内 健一 (慶應義塾大学理工学部 )
$p$-adic elliptic polylogarithm, $p$-adic Eisenstein series and Katz measure
(joint work with G. Kings)

[ Abstract ]
The Eisenstein classes are important elements in the motivic cohomology
of a modular curve, defined as the specializations of the motivic elliptic
polylogarithm by torsion sections. The syntomic Eisenstein classes are
defined as the image by the syntomic regulator of the motivic Eisenstein
classes. In this talk, we explain our result concerning the relation between
syntomic Eisenstein classes restricted to the ordinary locus and
p-adic Eisenstein series.


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
今井 直毅
On the connected components of moduli spaces of finite flat models


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
原 隆 (東京大学大学院数理科学研究科)
Iwasawa theory of totally real fields for certain non-commutative $p$-extensions
[ Abstract ]
Recently, Kazuya Kato has proven the non-commutative Iwasawa main
conjecture (in the sense of Coates, Fukaya, Kato, Sujatha and Venjakob) for
non-commutative Galois extensions of "Heisenberg type" of totally real fields,
using integral logarithmic homomorphisms. In this talk, we apply Kato's method
to certain non-commutative $p$-extensions which are more complicated than those
of Heisenberg type, and prove the main conjecture for them.


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
Luc Illusie (Universite Paris-Sud 11)
Odds and ends on finite group actions and traces
[ Abstract ]
Suppose a finite group G acts on a scheme X separated and of finite type over a field k. This raises several questions about the traces of elements s of G (or more generally products sg, for g in the Galois group of k) on cohomology groups of various types associated with X/k (with compact support or no support, Betti if k = C, l-adic, rigid). Some were considered and solved long ago, others only recently. I will in particular discuss an equivariant generalization of a theorem of Laumon on Euler-Poincar¥'e characteristics.


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
Weizhe Zheng (Universite Paris-Sud 11)
Integrality, Rationality, and Independence of l in l-adic Cohomology over Local Fields
[ Abstract ]
I will discuss two problems on traces in l-adic cohomology over local fields with finite residue field. In the first part, I will describe the behavior of integral complexes of l-adic sheaves under Grothendieck's six operations and the nearby cycle functor. In the second part, I will talk about rationality and independence of l. More precisely, I will introduce a notion of compatibility for systems of l-adic complexes and explain the proof of its stability by the above operations, in a slightly more general context (equivariant under finite groups). The main tool in this talk is a theorem of de Jong on


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
Antoine Chambert-Loir (Universite de Rennes 1)
Equidistribution theorems in Arakelov geometry
[ Abstract ]
The proof of Bogomolov's conjecture by Zhang made a crucial use
of an equidistribution property for the Galois orbits of points of small
heights in Abelian varieties defined over number fields.
Such an equidistribution property is proved using a method invented
by Szpiro, Ullmo and Zhang, and makes use of Arakelov theory.
This equidistribution theorem takes place in the complex torus
associated to the Abelian variety. I will show how a similar
equidistribution theorem can be proven for the p-adic topology ;
we have to use Berkovich space. Thanks to recent results of Yuan
about `big line bundles' in Arakelov geometry, the situation
is now very well understood.


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
中村健太郎 (東京大学大学院数理科学研究科)
Classification of two dimensional trianguline representations of p-adic fields
[ Abstract ]
Trianguline representation is a class of p-adic Galois representations of p-adic fields. This was defined by P.Colmez by using ($\\varphi, \\Gamma$)-modules over Robba ring. In his study of p-adic local Langlands correspondence of GL_2(Q_p), he completely classified two dimensional trianguline representations of Q_p. On the other hand, L.Berger recently defined the category of B-pairs and established the equivalence between the category of B-pairs and the category of ($\\varphi,\\Gamma$)-modules over Robba ring. In this talk, we extend the Colmez's result by using B-pairs. We completely classify two dimensional trianguline representations of K for any finite extension of Q_p. We also talk about a relation between two dimensional trianguline representations and principal series or special series of GL_2(K).


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
Christopher Rasmussen (京都大学数理解析研究所)
Abelian varieties with constrained torsion
[ Abstract ]
The pro-$l$ Galois representation attached to the arithmetic fundamental group of a curve $X$ is heavily influenced by the arithmetic of certain classes of its branched covers. It is natural, therefore, to search for and classify these special covers in a meaningful way. When $X$ is the projective line minus three points, one finds that such covers are very scarce. In joint work with Akio Tamagawa, we formulate a conjecture to quanitify this scarcity, and present a proof for the conjecture in the case of genus one curves defined over $\\Q$.


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
Pierre Colmez (Ecole Polytechnique)
On the p-adic local Langlands correspondance for GL2(Qp)


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
阿部知行 (東京大学大学院数理科学研究科)
overconvergent F-isocrystalの特性サイクルについて
[ Abstract ]
今回の講演ではBerthelotによる数論的D加群の理論を用いることによってunit-root overconvergent F-isocrystalに対してSwan導手を定義し、Kato-Saitoにより幾何学的な手法を用いて定義されたSwan導手と比較する。応用として、特異点の解消の仮定のもとでKato-SaitoのSwan導手の整数性予想を導く。


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
James Lewis (University of Alberta)
Abel-Jacobi Maps Associated to Algebraic Cycles I

[ Abstract ]
This talk concerns the Bloch cycle class map from the higher Chow groups to Deligne cohomology of a projective algebraic manifold. We provide an explicit formula for this map in terms of polylogarithmic type currents.


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
Gereon Quick (Universitaet Muenster)
Etale cobordism
[ Abstract ]
We define and study a new candidate of etale topological cohomology theories for schemes over a field of abritrary characteristic: etale cobordism. As etale K-theory is related to algebraic K-theory, etale cobordism is related to algebraic cobordism of Voevodsky and Levine/Morel. It shares some nice properties of topological theories, e.g. it is equipped with an Atiyah-Hirzebruch spectral sequence from etale cohomology. We discuss in particular a comparison theorem between etale and algebraic cobordism after inverting a Bott element and, finally, we give an outlook to further possible applications of this theory.


15:00-18:00   Room #117 (Graduate School of Math. Sci. Bldg.)
E. Lau (Univ. of Bielefeld) 15:00-15:45
Classification of p-divisible groups by displays and duality
T. Zink (Univ. of Bielefeld) 16:00-16:45
Applications of the theory of displays
E. Looijenga (Univ. of Utrecht) 17:00-18:00
Presentation of mapping class groups from algebraic geometry
[ Abstract ]
A presentation of the mapping class group of a genus g surface with one hole is due to Wajnryb with later improvements due to M. Matsumoto. The generators are Dehn twists defined by 2g+1 closed curves on the surface. The relations involving only two Dehn twists are the familiar Artin relations, we show that those involving more than two can be derived from algebro-geometry considerations.


16:30-17:30   Room #002 (Graduate School of Math. Sci. Bldg.)
Steven Zucker (Johns Hopkins大学)
The reductive Borel-Serre motive


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
梶原 健 (横浜国立大学)
Tropical toric varieties


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
Andreas Rosenschon (University of Alberta)
Algebraic cycles on products of elliptic curves over p-adic fields


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
Stephen Lichtenbaum (Brown University)
The conjecture of Birch and Swinnerton-Dyer is misleading
[ Abstract ]
All values of zeta and L-functions at integral points should be given in terms of products and quotients of Euler characteristics, and the order of the zeroes and poles at these
points should be given by the sum and difference of the ranks of
corresponding finitely generated abelian groups.


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
宮崎 直 (東京大学大学院数理科学研究科)
$(g,K)$-module structures of principal series representations
of $Sp(3,R)$


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
長谷川 泰子 (東京大学大学院数理科学研究科)
Cohen-Eisenstein series and modular forms associated to imaginary quadratic fields


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
津嶋 貴弘 (東京大学大学院数理科学研究科)
Localized Characteristic Class and Swan Class


16:30-17:30   Room #117 (Graduate School of Math. Sci. Bldg.)
斎藤 毅 (東京大学大学院数理科学研究科)

< Previous 123456789 Next >