Numerical Analysis Seminar
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Tuesday 16:30 - 18:00 002Room #002 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Norikazu Saito, Takahito Kashiwabara |
2015/02/18
16:30-18:00 Room #002 (Graduate School of Math. Sci. Bldg.)
Toshio Fukushima (National Astronomical Observatory)
Precise and fast computation of elliptic integrals and elliptic functions (日本語)
Toshio Fukushima (National Astronomical Observatory)
Precise and fast computation of elliptic integrals and elliptic functions (日本語)
[ Abstract ]
Summarized is the recent progress of the methods to compute (i) Legendre's normal form complete elliptic integrals of all three kinds, $K(m)$, $E(m)$, and $\Pi(n|m)$, (ii) Legendre's normal form incomplete elliptic integrals of all three kinds, $F(\phi|m)$, $E(\phi|m)$, and $\Pi(\phi,n|m)$, (iii) Jacobian elliptic functions, $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, $\mathrm{dn}(u|m)$, and $\mathrm{am}(u|m)$, (iv) the inverse functions of $K(m)$ and $E(m)$, $m_K(K)$ and $m_E(E)$, (v) the inverse of a general incomplete elliptic integral in Jacobi's form, $G(\mathrm{am}(u|m),n|m)$, with respect to $u$, and (vi) the partial derivatives of $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, $dn(u|m)$, $E(\mathrm{am}(u|m)|m)$, and $\Pi(\mathrm{am}(u|m),n|m)$ with respect to $u$ and those of $F(\phi|m)$, $E(\phi|m)$, and $\Pi(\phi,n|m)$ with respect to $\phi$. In order to avoid the information loss when $n\ll 1$ and/or $m \ll 1$, focused are the associate incomplete elliptc integrals defined as $B(\phi|m)=[E(\phi|m)-(1-m)F(\phi|m)]/m$, $D(\phi|m)=[F(\phi|m)-E(\phi|m)]/m$, and $J(\phi,n|m)=[\Pi(\phi,n|m)-F(\phi|m)]/n$, and their complete versions, $B(m)=[E(m)-(1-m)K(m)]/m$, $D(m)=[K(m)-E(m)]/m$, and $J(n|m)=[\Pi(n|m)-K(m)]/n$. The main techniques used are (i) the piecewise approximation for single variable functions as $K(m)$, and (ii) the combination of repeated usage of the half and double argument transformations and the truncated Maclaurin series expansions with respect to $u = F(\phi|m)$. The new methods are of the full double precision accuracy without any chance of cancellation against small input arguments. They run significantly faster than the existing methods: (i) 2.5 times faster than Cody's Chebyshev polynomial approximations for $K(m)$ and $E(m)$, (ii) 2.5 times faster than Bulirsch's cel for $\Pi(n|m)$, (iii) slightly faster than Bulirsch's el1 for $F(\phi|m)$, (iv) 3.5 times faster than Carlson's $R_D$ for $E(\phi|m)$, (v) 3.5 times faster than Carlson's $R_C$, $R_D$, $R_F$, and $R_J$ for $\Pi(\phi,n|m)$, and (vi) 1.5 times faster than Bulirsch's \texttt{sncndn} for $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, and $\mathrm{dn}(u|m)$.
Summarized is the recent progress of the methods to compute (i) Legendre's normal form complete elliptic integrals of all three kinds, $K(m)$, $E(m)$, and $\Pi(n|m)$, (ii) Legendre's normal form incomplete elliptic integrals of all three kinds, $F(\phi|m)$, $E(\phi|m)$, and $\Pi(\phi,n|m)$, (iii) Jacobian elliptic functions, $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, $\mathrm{dn}(u|m)$, and $\mathrm{am}(u|m)$, (iv) the inverse functions of $K(m)$ and $E(m)$, $m_K(K)$ and $m_E(E)$, (v) the inverse of a general incomplete elliptic integral in Jacobi's form, $G(\mathrm{am}(u|m),n|m)$, with respect to $u$, and (vi) the partial derivatives of $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, $dn(u|m)$, $E(\mathrm{am}(u|m)|m)$, and $\Pi(\mathrm{am}(u|m),n|m)$ with respect to $u$ and those of $F(\phi|m)$, $E(\phi|m)$, and $\Pi(\phi,n|m)$ with respect to $\phi$. In order to avoid the information loss when $n\ll 1$ and/or $m \ll 1$, focused are the associate incomplete elliptc integrals defined as $B(\phi|m)=[E(\phi|m)-(1-m)F(\phi|m)]/m$, $D(\phi|m)=[F(\phi|m)-E(\phi|m)]/m$, and $J(\phi,n|m)=[\Pi(\phi,n|m)-F(\phi|m)]/n$, and their complete versions, $B(m)=[E(m)-(1-m)K(m)]/m$, $D(m)=[K(m)-E(m)]/m$, and $J(n|m)=[\Pi(n|m)-K(m)]/n$. The main techniques used are (i) the piecewise approximation for single variable functions as $K(m)$, and (ii) the combination of repeated usage of the half and double argument transformations and the truncated Maclaurin series expansions with respect to $u = F(\phi|m)$. The new methods are of the full double precision accuracy without any chance of cancellation against small input arguments. They run significantly faster than the existing methods: (i) 2.5 times faster than Cody's Chebyshev polynomial approximations for $K(m)$ and $E(m)$, (ii) 2.5 times faster than Bulirsch's cel for $\Pi(n|m)$, (iii) slightly faster than Bulirsch's el1 for $F(\phi|m)$, (iv) 3.5 times faster than Carlson's $R_D$ for $E(\phi|m)$, (v) 3.5 times faster than Carlson's $R_C$, $R_D$, $R_F$, and $R_J$ for $\Pi(\phi,n|m)$, and (vi) 1.5 times faster than Bulirsch's \texttt{sncndn} for $\mathrm{sn}(u|m)$, $\mathrm{cn}(u|m)$, and $\mathrm{dn}(u|m)$.