Infinite Analysis Seminar Tokyo

Seminar information archive ~04/16Next seminarFuture seminars 04/17~

Date, time & place Saturday 13:30 - 16:00 117Room #117 (Graduate School of Math. Sci. Bldg.)

2007/05/26

13:00-16:30   Room #117 (Graduate School of Math. Sci. Bldg.)
酒井一博 (慶応大経済) 13:00-14:30
弦理論対応における可積分性
[ Abstract ]
概要:N=4超対称ゲージ理論と反ド・ジッター時空を背景とする弦理論の等価性を主
張するAdS/CFT対応は、ここ十年弦理論の分野でもっとも活発に研究されてい
るテーマのひとつである。この枠組の中で、伝統的な一次元量子可積分系や二
次元古典可積分系と同種の可積分構造が発見され、近年飛躍的な研究の進展が
続いている。この流れは、既存の可積分系の知識の単なる応用にとどまらず、
一次元Hubbard模型の可積分性の背景にある代数構造を明らかにするなど、可
積分系の分野へのフィードバックをももたらしている。本講演では、ゲージ理
論・弦理論双方で可積分性がどのように現れるかを概観しながら、この分野の
研究の最前線を紹介する。
加藤晃史 (東大数理) 15:00-16:30
AdS/CFT 対応における $a$-maximization について
[ Abstract ]
弦双対性の一つである AdS/CFT 対応において、$a$-maximization
と呼ばれる変分問題が4次元超対称共形場理論のスペクトルの決定に
重要な働きをするがわかってきた。本講演では非専門家向けに
$a$-maximization の基本的な構造を説明するとともに、
関連するいくつかの話題を紹介したい。