Applied Analysis
Seminar information archive ~01/02|Next seminar|Future seminars 01/03~
| Date, time & place | Thursday 16:00 - 17:30 Room # (Graduate School of Math. Sci. Bldg.) |
|---|---|
| Organizer(s) | ISHIGE Kazuhiro, MIYAMOTO Yasuhito, MITAKE Hiroyoshi, TAKADA Ryo |
2025/09/25
16:00-17:30 Room #128 (Graduate School of Math. Sci. Bldg.)
Fumihiko Onoue (Technische Universität München)
On the shape of fractional minimal surfaces (Japanese)
Fumihiko Onoue (Technische Universität München)
On the shape of fractional minimal surfaces (Japanese)
[ Abstract ]
Fractional perimeter (or fractional area) has been studied for more than a decade since Caffarelli, Roquejofffre, and Savin introduced its notion in 2010; however, there are still a lot of things unknown. In this talk, we discuss the shape of the boundary of sets minimizing their fractional perimeter under several boundary conditions, reviewing several interesting examples distinct from sets minimizing their classical perimeter. Moreover, if time permits, we present another notion of fractional area for smooth hypersurfaces with boundary, which was introduced by Paroni, Podio-Guidugli, and Seguin in 2018. Then we discuss the shape of critical points of their fractional area in several simple situations. This talk is partially based on a joint work with S. Dipierro and E. Valdinoci.
Fractional perimeter (or fractional area) has been studied for more than a decade since Caffarelli, Roquejofffre, and Savin introduced its notion in 2010; however, there are still a lot of things unknown. In this talk, we discuss the shape of the boundary of sets minimizing their fractional perimeter under several boundary conditions, reviewing several interesting examples distinct from sets minimizing their classical perimeter. Moreover, if time permits, we present another notion of fractional area for smooth hypersurfaces with boundary, which was introduced by Paroni, Podio-Guidugli, and Seguin in 2018. Then we discuss the shape of critical points of their fractional area in several simple situations. This talk is partially based on a joint work with S. Dipierro and E. Valdinoci.


Text only print
Full screen print

