Algebraic Geometry Seminar
Seminar information archive ~03/19|Next seminar|Future seminars 03/20~
Date, time & place | Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu |
Seminar information archive
2016/11/08
15:30-17:00 Room #118 (Graduate School of Math. Sci. Bldg.)
Kenta Hashizume (Department of Mathematics, Kyoto University)
Minimal model theory for relatively trivial log canonical pairs
Kenta Hashizume (Department of Mathematics, Kyoto University)
Minimal model theory for relatively trivial log canonical pairs
[ Abstract ]
The good minimal model conjecture is an important open problem in the birational geometry, and inductive arguments on the dimension of varieties are useful when we work on this conjecture. In fibration with a log canoinical pair having some good properties, it is expected that the above conjecture for the log canonical pair on total space can be proved by investigating the general fiber and base variety of the fibration. In this talk, I will explain an inductive argument in fibrations with relatively trivial log canonical pairs and introduce some applications of the inductive argument.
The good minimal model conjecture is an important open problem in the birational geometry, and inductive arguments on the dimension of varieties are useful when we work on this conjecture. In fibration with a log canoinical pair having some good properties, it is expected that the above conjecture for the log canonical pair on total space can be proved by investigating the general fiber and base variety of the fibration. In this talk, I will explain an inductive argument in fibrations with relatively trivial log canonical pairs and introduce some applications of the inductive argument.
2016/10/25
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Yongnam Lee (KAIST/RIMS)
Q-Gorenstein deformation theory and it applications to algebraic surfaces (English)
Yongnam Lee (KAIST/RIMS)
Q-Gorenstein deformation theory and it applications to algebraic surfaces (English)
[ Abstract ]
The notion of Q-Gorenstein variety is important for the minimal model theory and the compact moduli theory of algebraic varieties in characteristic 0. Also Q-Gorenstein deformation theory can be applied to construct (simply connected) surfaces of general type with geometric genus 0 over the field of any characteristic. In this talk, some applications of Q-Gorenstein deformation theory to algebraic surfaces and some interesting examples related to Q-Gorenstein morphisms will be presented.
The notion of Q-Gorenstein variety is important for the minimal model theory and the compact moduli theory of algebraic varieties in characteristic 0. Also Q-Gorenstein deformation theory can be applied to construct (simply connected) surfaces of general type with geometric genus 0 over the field of any characteristic. In this talk, some applications of Q-Gorenstein deformation theory to algebraic surfaces and some interesting examples related to Q-Gorenstein morphisms will be presented.
2016/10/11
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Sho Ejiri (University of Tokyo)
On varieties with splittings of relative Frobenius morphisms of Albanese maps
Sho Ejiri (University of Tokyo)
On varieties with splittings of relative Frobenius morphisms of Albanese maps
[ Abstract ]
Varieties with splittings of Frobenius morphisms are called F-split varieties, which satisfy strong properties such as Kodaira vanishing. However, some important varieties are not F-split. For example, an abelian variety is F-split if and only if its p-rank is maximum. In this talk, we discuss the class of varieties with splittings of relative Frobenius morphisms of Albanese maps, which includes abelian varieties. As a consequence of Sannai and Tanaka's characterization of ordinary abelian varieties, we see that this class also includes F-split varieties. Furthermore, for varieties in this class, we show that the Kodaira vanishing theorem holds, and that Albanese maps are algebraic fiber spaces.
Varieties with splittings of Frobenius morphisms are called F-split varieties, which satisfy strong properties such as Kodaira vanishing. However, some important varieties are not F-split. For example, an abelian variety is F-split if and only if its p-rank is maximum. In this talk, we discuss the class of varieties with splittings of relative Frobenius morphisms of Albanese maps, which includes abelian varieties. As a consequence of Sannai and Tanaka's characterization of ordinary abelian varieties, we see that this class also includes F-split varieties. Furthermore, for varieties in this class, we show that the Kodaira vanishing theorem holds, and that Albanese maps are algebraic fiber spaces.
2016/10/04
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Taku Suzuki (Waseda University)
Higher order minimal families of rational curves and Fano manifolds with nef Chern characters (Japanese. Writing in English. )
Taku Suzuki (Waseda University)
Higher order minimal families of rational curves and Fano manifolds with nef Chern characters (Japanese. Writing in English. )
[ Abstract ]
In this talk, we introduce higher order minimal families $H_i$ of rational curves
associated to Fano manifolds $X$. We prove that $H_i$ is also a Fano manifold
if the Chern characters of $X$ satisfy some positivity conditions. We also provide
a sufficient condition for Fano manifolds to be covered by higher rational manifolds.
In this talk, we introduce higher order minimal families $H_i$ of rational curves
associated to Fano manifolds $X$. We prove that $H_i$ is also a Fano manifold
if the Chern characters of $X$ satisfy some positivity conditions. We also provide
a sufficient condition for Fano manifolds to be covered by higher rational manifolds.
2016/07/25
13:30-15:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Fumiaki Suzuki (Tokyo)
Birational rigidity of complete intersections (English)
Fumiaki Suzuki (Tokyo)
Birational rigidity of complete intersections (English)
[ Abstract ]
A complete intersection defined by s hypersurfaces of degree d_1, ... ,d_s in a projective space P^N is Q-Fano, i.e. normal, Q-factorial, terminal and having an ample anti-canonical divisor, if d_1 + ... + d_s is at most N and it has only mild singularities. Then it is rationally-connected by the results of Kollar-Miyaoka-Mori, Zhang and Hacon-Mckernan. A natural question is to determine its rationality. If its dimension or degree is at most 2, then it is rational. How about the remaining cases?
When d_1 + ... + d_s = N, birational rigidity give one of the most effective ways to tackle this problem. We recall that a Q-Fano variety is birationally superrigid if any birational map to the source of another Mori fiber space is isomorphism. It implies that X is non-rational and Bir(X) = Aut(X). After the works of Iskovskih-Manin, Pukhlikov, Chelt'so and de Fernex-Ein-Mustata, de Fernex proved that every smooth hypersurface of degree N in P^N is birationally superrigid for N at least 4. He also proved birational superrigidity of a large class of singular hypersurfaces of this type.
In this talk, we would like to extend de Fernex's results to complete intersections. As a key step, we generalize Pukhlikov's multiplicity bounds of cycles in hypersurfaces to complete intersections.
A complete intersection defined by s hypersurfaces of degree d_1, ... ,d_s in a projective space P^N is Q-Fano, i.e. normal, Q-factorial, terminal and having an ample anti-canonical divisor, if d_1 + ... + d_s is at most N and it has only mild singularities. Then it is rationally-connected by the results of Kollar-Miyaoka-Mori, Zhang and Hacon-Mckernan. A natural question is to determine its rationality. If its dimension or degree is at most 2, then it is rational. How about the remaining cases?
When d_1 + ... + d_s = N, birational rigidity give one of the most effective ways to tackle this problem. We recall that a Q-Fano variety is birationally superrigid if any birational map to the source of another Mori fiber space is isomorphism. It implies that X is non-rational and Bir(X) = Aut(X). After the works of Iskovskih-Manin, Pukhlikov, Chelt'so and de Fernex-Ein-Mustata, de Fernex proved that every smooth hypersurface of degree N in P^N is birationally superrigid for N at least 4. He also proved birational superrigidity of a large class of singular hypersurfaces of this type.
In this talk, we would like to extend de Fernex's results to complete intersections. As a key step, we generalize Pukhlikov's multiplicity bounds of cycles in hypersurfaces to complete intersections.
2016/07/25
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Sho Tanimoto (University of Copenhagen)
On the geometry of thin exceptional sets in Manin’s conjecture
Sho Tanimoto (University of Copenhagen)
On the geometry of thin exceptional sets in Manin’s conjecture
[ Abstract ]
Manin’s conjecture predicts the asymptotic formula for the counting function of rational points on a Fano variety X after removing the exceptional sets. The original conjecture, which removes a proper closed subset, is wrong due to covering families of subvarieties violating the compatibility of Manin’s conjecture, and its refinement, suggested by Emmanuel Peyre, removes a thin set instead of a closed set. In this talk, first I would like to explain that subvarieties which conjecturally have more points than X only form a thin set using the minimal model program and the boundedness of log Fano varieties. After that, I would like to discuss our conjecture on the birational boundedness of covers violating the compatibility of Manin’s conjecture, and present some results in dimension 2 and 3. This is joint work with Brian Lehmann.
Manin’s conjecture predicts the asymptotic formula for the counting function of rational points on a Fano variety X after removing the exceptional sets. The original conjecture, which removes a proper closed subset, is wrong due to covering families of subvarieties violating the compatibility of Manin’s conjecture, and its refinement, suggested by Emmanuel Peyre, removes a thin set instead of a closed set. In this talk, first I would like to explain that subvarieties which conjecturally have more points than X only form a thin set using the minimal model program and the boundedness of log Fano varieties. After that, I would like to discuss our conjecture on the birational boundedness of covers violating the compatibility of Manin’s conjecture, and present some results in dimension 2 and 3. This is joint work with Brian Lehmann.
2016/07/12
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Kenji Matsuki (Purdue/RIMS)
Hypersurfaces of maximal contact and jumping phenomenon in the problem of resolution of singularities in positive characteristic (English)
https://www.math.purdue.edu/people/bio/kmatsuki/home
Kenji Matsuki (Purdue/RIMS)
Hypersurfaces of maximal contact and jumping phenomenon in the problem of resolution of singularities in positive characteristic (English)
[ Abstract ]
According to our approach for resolution of singularities in positive characteristic (called the Idealistic Filtration Program, alias the I.F.P.) the algorithm is divided into the following two steps:
Step 1. Reduction of the general case to the monomial case.
Step 2. Solution in the monomial case.
While we have established Step 1 in abritrary dimension, Step 2 becomes very subtle and difficult in positive characteristic. This is in clear contrast to the classical setting in characteristic zero, where the solution in the monomial case is quite easy.
The talk consists of the two parts.
・Part I [13:30--15:00]: This part is mainly for the students, who are not familiar with the classical results in characteristic zero. Through Hironaka's reformulation of the problem of resolution of singularities, we will see how the notion of a hypersurface of maximal contact provides an inductive structure on dimension to the problem, and hence leading to a solution. Since our I.F.P. is closely modelled upon the classical algorithm in characteristic zero, this part should also give some background material and motivation for our approach in positive characteristic.
・Part II [15:30--17:00]: This is the main body of my talk. I will proceed according to the following menu.
{\bf Framewrok of the I.F.P.}: First I will explain the framewrok of the I.F.P., which further extends Hironaka's refomulation. The biggest obstacle to establish Step 1 is the fact that, in positive characteristic, a smooth hypersurface of maximal contact does not exist in general. In order to overcome this obstacle, we introduce the notion of the Leading Generator System, which is the collection of multiple singular hypersurfaces of maximal contcat.
{\bf Monomial Case}: As metioned above, then the problem is reduced to the one in the monomial case.
・ {\bf Inductive scheme on the invariant \boldmath$\tau$}: We firstly observe that, by the inductive scheme on the invariant $\tau$, we have only to consider the case with $\tau = 1$, i.e., the case where there is only one single singular hypersurface of maximal contact.
・ {\bf Tight Monomail Case}: We secondly observe that, if we reach the so-called Tight Monomial Case, then we can easily solve the problem.
・ {\bf Introduction of the invariant `` \boldmath$\mathrm{inv}_{\mathrm{MON},real}$''}: Thus our final task is, after arriving at the monimial case with $\tau = 1$, to reach the Tight Monomial Case, which is characterized by $\mathrm{inv}_{\mathrm{MON},real} = 0$.
・ {\bf Moh-Hauser Jumping phenomenon}: The invariant $\mathrm{inv}_{\mathrm{MON},real}$ usually behaves well, i.e., decreases after each blow up. But under some circustances, it strictly increases. I will explain this well-known Moh-Jumping phenomenon by giving a simple example.
・ {\bf Eventual decrease of the jumping peaks}: At last, the problem boils down to analyzing and overcoming the Moh-Hauser Jumping phenomenon. For this purpose, we will present the conjecture of ``Eventual decrease of the jumping peaks'', which is affirmatively solved in dimension 3, and is the current focus of our research in dimension 4.
[ Reference URL ]According to our approach for resolution of singularities in positive characteristic (called the Idealistic Filtration Program, alias the I.F.P.) the algorithm is divided into the following two steps:
Step 1. Reduction of the general case to the monomial case.
Step 2. Solution in the monomial case.
While we have established Step 1 in abritrary dimension, Step 2 becomes very subtle and difficult in positive characteristic. This is in clear contrast to the classical setting in characteristic zero, where the solution in the monomial case is quite easy.
The talk consists of the two parts.
・Part I [13:30--15:00]: This part is mainly for the students, who are not familiar with the classical results in characteristic zero. Through Hironaka's reformulation of the problem of resolution of singularities, we will see how the notion of a hypersurface of maximal contact provides an inductive structure on dimension to the problem, and hence leading to a solution. Since our I.F.P. is closely modelled upon the classical algorithm in characteristic zero, this part should also give some background material and motivation for our approach in positive characteristic.
・Part II [15:30--17:00]: This is the main body of my talk. I will proceed according to the following menu.
{\bf Framewrok of the I.F.P.}: First I will explain the framewrok of the I.F.P., which further extends Hironaka's refomulation. The biggest obstacle to establish Step 1 is the fact that, in positive characteristic, a smooth hypersurface of maximal contact does not exist in general. In order to overcome this obstacle, we introduce the notion of the Leading Generator System, which is the collection of multiple singular hypersurfaces of maximal contcat.
{\bf Monomial Case}: As metioned above, then the problem is reduced to the one in the monomial case.
・ {\bf Inductive scheme on the invariant \boldmath$\tau$}: We firstly observe that, by the inductive scheme on the invariant $\tau$, we have only to consider the case with $\tau = 1$, i.e., the case where there is only one single singular hypersurface of maximal contact.
・ {\bf Tight Monomail Case}: We secondly observe that, if we reach the so-called Tight Monomial Case, then we can easily solve the problem.
・ {\bf Introduction of the invariant `` \boldmath$\mathrm{inv}_{\mathrm{MON},real}$''}: Thus our final task is, after arriving at the monimial case with $\tau = 1$, to reach the Tight Monomial Case, which is characterized by $\mathrm{inv}_{\mathrm{MON},real} = 0$.
・ {\bf Moh-Hauser Jumping phenomenon}: The invariant $\mathrm{inv}_{\mathrm{MON},real}$ usually behaves well, i.e., decreases after each blow up. But under some circustances, it strictly increases. I will explain this well-known Moh-Jumping phenomenon by giving a simple example.
・ {\bf Eventual decrease of the jumping peaks}: At last, the problem boils down to analyzing and overcoming the Moh-Hauser Jumping phenomenon. For this purpose, we will present the conjecture of ``Eventual decrease of the jumping peaks'', which is affirmatively solved in dimension 3, and is the current focus of our research in dimension 4.
https://www.math.purdue.edu/people/bio/kmatsuki/home
2016/07/05
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Dulip Piyaratne (IPMU)
Generalized Bogomolov-Gieseker type inequality for Fano 3-folds (English)
Dulip Piyaratne (IPMU)
Generalized Bogomolov-Gieseker type inequality for Fano 3-folds (English)
[ Abstract ]
Construction of Bridgeland stability conditions on a given smooth projective 3-fold is an important problem. A conjectural construction for any 3-fold was introduced by Bayer, Macri and Toda, and the problem is reduced to proving so-called Bogomolov-Gieseker type inequality holds for certain stable objects in the derived category. It has been shown to hold for Fano 3-folds of Picard rank one due to the works of Macri, Schmidt and Li. However, Schmidt gave a counter-example for a Fano 3-fold of higher Picard rank. In this talk, I will explain how to modify the original conjectural inequality for general Fano 3-folds and why it holds.
Construction of Bridgeland stability conditions on a given smooth projective 3-fold is an important problem. A conjectural construction for any 3-fold was introduced by Bayer, Macri and Toda, and the problem is reduced to proving so-called Bogomolov-Gieseker type inequality holds for certain stable objects in the derived category. It has been shown to hold for Fano 3-folds of Picard rank one due to the works of Macri, Schmidt and Li. However, Schmidt gave a counter-example for a Fano 3-fold of higher Picard rank. In this talk, I will explain how to modify the original conjectural inequality for general Fano 3-folds and why it holds.
2016/06/27
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Christopher Hacon (University of Utah)
Generic vanishing and birational geometry in char p>0 (ENGLISH)
http://www.math.utah.edu/~hacon/
Christopher Hacon (University of Utah)
Generic vanishing and birational geometry in char p>0 (ENGLISH)
[ Abstract ]
Many precise results on the birational geometry of irregular varieties have been obtained by combining the generic vanishing theorems of Green and Lazarsfeld with the Fourier-Mukai transform. In this talk we will discuss the failure of the generic vanishing theorems of Green and Lazarsfeld in positive characteristic. We will then explain a different approach to generic vanishing based on the theory of F-singularities that leads to concrete applications in birational geometry in positive characteristics
[ Reference URL ]Many precise results on the birational geometry of irregular varieties have been obtained by combining the generic vanishing theorems of Green and Lazarsfeld with the Fourier-Mukai transform. In this talk we will discuss the failure of the generic vanishing theorems of Green and Lazarsfeld in positive characteristic. We will then explain a different approach to generic vanishing based on the theory of F-singularities that leads to concrete applications in birational geometry in positive characteristics
http://www.math.utah.edu/~hacon/
2016/06/20
16:30-18:00 Room #123 (Graduate School of Math. Sci. Bldg.)
De-Qi Zhang (National University of Singapore)
BUILDING BLOCKS OF POLARIZED ENDOMORPHISMS OF NORMAL PROJECTIVE VARIETIES (English)
http://www.math.nus.edu.sg/~matzdq/
De-Qi Zhang (National University of Singapore)
BUILDING BLOCKS OF POLARIZED ENDOMORPHISMS OF NORMAL PROJECTIVE VARIETIES (English)
[ Abstract ]
An endomorphism f of a normal projective variety X is polarized if f∗H ∼ qH for some ample Cartier divisor H and integer q > 1.
We first assert that a suitable maximal rationally connected fibration (MRC) can be made f-equivariant using a construction of N. Nakayama, that f descends to a polarized endomorphism of the base Y of this MRC and that this Y is a Q-abelian variety (quasi- ́etale quotient of an abelian variety). Next we show that we can run the minimal model program (MMP) f-equivariantly for mildly singular X and reach either a Q-abelian variety or a Fano variety of Picard number one.
As a consequence, the building blocks of polarized endomorphisms are those of Q- abelian varieties and those of Fano varieties of Picard number one.
Along the way, we show that f always descends to a polarized endomorphism of the Albanese variety Alb(X) of X, and that a power of f acts as a scalar on the Neron-Severi group of X (modulo torsion) when X is smooth and rationally connected.
Partial answers about X being of Calabi-Yau type or Fano type are also given with an extra primitivity assumption on f which seems necessary by an example.
This is a joint work with S. Meng.
[ Reference URL ]An endomorphism f of a normal projective variety X is polarized if f∗H ∼ qH for some ample Cartier divisor H and integer q > 1.
We first assert that a suitable maximal rationally connected fibration (MRC) can be made f-equivariant using a construction of N. Nakayama, that f descends to a polarized endomorphism of the base Y of this MRC and that this Y is a Q-abelian variety (quasi- ́etale quotient of an abelian variety). Next we show that we can run the minimal model program (MMP) f-equivariantly for mildly singular X and reach either a Q-abelian variety or a Fano variety of Picard number one.
As a consequence, the building blocks of polarized endomorphisms are those of Q- abelian varieties and those of Fano varieties of Picard number one.
Along the way, we show that f always descends to a polarized endomorphism of the Albanese variety Alb(X) of X, and that a power of f acts as a scalar on the Neron-Severi group of X (modulo torsion) when X is smooth and rationally connected.
Partial answers about X being of Calabi-Yau type or Fano type are also given with an extra primitivity assumption on f which seems necessary by an example.
This is a joint work with S. Meng.
http://www.math.nus.edu.sg/~matzdq/
2016/06/20
14:45-16:15 Room #123 (Graduate School of Math. Sci. Bldg.)
Zhixian Zhu (KIAS)
Fujita's freeness conjecture for 5-fold (English)
Zhixian Zhu (KIAS)
Fujita's freeness conjecture for 5-fold (English)
[ Abstract ]
Let X be a smooth projective variety of dimension n and L any ample line bundle. Fujita conjectured that the adjoint line bundle O(K_X+mL) is globally generated for any m greater or equal to dimX+1. By studying the singularity of pairs, we prove Fujita's freeness conjecture for smooth 5-folds.
Let X be a smooth projective variety of dimension n and L any ample line bundle. Fujita conjectured that the adjoint line bundle O(K_X+mL) is globally generated for any m greater or equal to dimX+1. By studying the singularity of pairs, we prove Fujita's freeness conjecture for smooth 5-folds.
2016/05/31
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Kiwamu Watanabe (Saitama University)
A Characterization of Symplectic Grassmannians (JAPANESE)
Kiwamu Watanabe (Saitama University)
A Characterization of Symplectic Grassmannians (JAPANESE)
[ Abstract ]
In the series of their works, J. M. Hwang and N. Mok have been developing the theory of Varieties of Minimal Rational Tangents (VMRT for short). In this direction, the results of Mok and J. Hong-Hwang allow us to recognize a homogeneous Fano manifold X of Picard number one by looking at its VMRT at a general point. This characterization works for all rational homogeneous manifolds of Picard number one whenever the VMRT is rational homogeneous, which is always the case except for the short root cases; namely for symplectic Grassmannians, and for two varieties of type F*4*.
In this talk we show that, if we impose that the VMRT is the expected one at every point of the variety, we may still characterize symplectic Grassmannians. This is a joint work with G. Occhetta and L. E. Sola Conde (arXiv:1604.06867).
In the series of their works, J. M. Hwang and N. Mok have been developing the theory of Varieties of Minimal Rational Tangents (VMRT for short). In this direction, the results of Mok and J. Hong-Hwang allow us to recognize a homogeneous Fano manifold X of Picard number one by looking at its VMRT at a general point. This characterization works for all rational homogeneous manifolds of Picard number one whenever the VMRT is rational homogeneous, which is always the case except for the short root cases; namely for symplectic Grassmannians, and for two varieties of type F*4*.
In this talk we show that, if we impose that the VMRT is the expected one at every point of the variety, we may still characterize symplectic Grassmannians. This is a joint work with G. Occhetta and L. E. Sola Conde (arXiv:1604.06867).
2016/05/24
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Katsutoshi Yamanoi (Osaka University)
ON PSEUDO KOBAYASHI HYPERBOLICITY OF SUBVARIETIES OF ABELIAN VARIETIES
(tba)
Katsutoshi Yamanoi (Osaka University)
ON PSEUDO KOBAYASHI HYPERBOLICITY OF SUBVARIETIES OF ABELIAN VARIETIES
(tba)
[ Abstract ]
We prove that the Kobayashi pseudo distance of a closed subvariety X of an abelian variety A is a true distance outside the special set Sp(X) of X, where Sp(X) is the union of all positive dimensional translated abelian subvarieties of A which are contained in X. More strongly, we prove that a closed subvariety X of an abelian variety is taut modulo Sp(X); Every sequence fn : D → X of holomorphic mappings from the unit disc D admits a subsequence which converges locally uniformly, unless the image fn(K) of a fixed compact set K of D eventually gets arbitrarily close to Sp(X) as n gets larger. These generalize a classical theorem on algebraic degeneracy of entire holomorphic curves in irregular varieties.
We prove that the Kobayashi pseudo distance of a closed subvariety X of an abelian variety A is a true distance outside the special set Sp(X) of X, where Sp(X) is the union of all positive dimensional translated abelian subvarieties of A which are contained in X. More strongly, we prove that a closed subvariety X of an abelian variety is taut modulo Sp(X); Every sequence fn : D → X of holomorphic mappings from the unit disc D admits a subsequence which converges locally uniformly, unless the image fn(K) of a fixed compact set K of D eventually gets arbitrarily close to Sp(X) as n gets larger. These generalize a classical theorem on algebraic degeneracy of entire holomorphic curves in irregular varieties.
2016/05/17
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Atsushi Ito (Dep. of Math. Kyoto Univ. )
On dual defects of toric varieties (TBA)
https://sites.google.com/site/atsushiito221/
Atsushi Ito (Dep. of Math. Kyoto Univ. )
On dual defects of toric varieties (TBA)
[ Abstract ]
For a projective variety embedded in a projective space,
we can define the dual variety in the dual projective space.
By dimension count, the codimension of the dual variety is expected to be one,
but it can be greater than one for some varieties.
For a smooth toric variety, it is known that the codimension of the dual variety is greater than one
if and only if the toric variety is a suitable projective bundle over some toric variety.
In this talk, I will explain a generalization of this result to toric varieties without the assumption of singularities.
This is a joint work with Katsuhisa Furukawa.
[ Reference URL ]For a projective variety embedded in a projective space,
we can define the dual variety in the dual projective space.
By dimension count, the codimension of the dual variety is expected to be one,
but it can be greater than one for some varieties.
For a smooth toric variety, it is known that the codimension of the dual variety is greater than one
if and only if the toric variety is a suitable projective bundle over some toric variety.
In this talk, I will explain a generalization of this result to toric varieties without the assumption of singularities.
This is a joint work with Katsuhisa Furukawa.
https://sites.google.com/site/atsushiito221/
2016/04/26
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Yuji Odaka (Dept. of Math., Kyoto U.)
A gentle introduction to K-stability and its recent development (Japanese)
https://sites.google.com/site/yujiodaka2013/
Yuji Odaka (Dept. of Math., Kyoto U.)
A gentle introduction to K-stability and its recent development (Japanese)
[ Abstract ]
K安定性とは複素代数多様体上の「標準的な」ケーラー計量の存在問題に端を発する,代数幾何的な概念です.二木先生や満渕先生等の先駆的な仕事に感化されて導入され,特に近年ホットに研究され始めている一方,未だその大半はより微分幾何的な研究者の方々や背景の中でなされているように講演者には感じられます.
代数幾何的にもどのように面白いか,どういった意義があるかに私見で軽く触れた上で,その基礎付けをより拡張した枠組みで説明しつつ,最先端でどのようなことが問題になっているかをいくらか(私の力量と時間の許す限り)解説しつつ,文献をご紹介できればと思っています
[ Reference URL ]K安定性とは複素代数多様体上の「標準的な」ケーラー計量の存在問題に端を発する,代数幾何的な概念です.二木先生や満渕先生等の先駆的な仕事に感化されて導入され,特に近年ホットに研究され始めている一方,未だその大半はより微分幾何的な研究者の方々や背景の中でなされているように講演者には感じられます.
代数幾何的にもどのように面白いか,どういった意義があるかに私見で軽く触れた上で,その基礎付けをより拡張した枠組みで説明しつつ,最先端でどのようなことが問題になっているかをいくらか(私の力量と時間の許す限り)解説しつつ,文献をご紹介できればと思っています
https://sites.google.com/site/yujiodaka2013/
2016/04/19
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Keiji Oguiso (University of Tokyo)
Isomorphic quartic K3 surfaces and Cremona transformations (JAPANESE)
Keiji Oguiso (University of Tokyo)
Isomorphic quartic K3 surfaces and Cremona transformations (JAPANESE)
[ Abstract ]
We show that
(i) there is a pair of smooth complex quartic K3 surfaces such that they are isomorphic as abstract varieties but not Cremona equivalent.
(ii) there is a pair of smooth complex quartic K3 surfaces such that they are Cemona equivalent but not projectively equivalent.
These two results are much inspired by e-mails from Professors Tuyen Truong and J\'anos Koll\'ar.
We show that
(i) there is a pair of smooth complex quartic K3 surfaces such that they are isomorphic as abstract varieties but not Cremona equivalent.
(ii) there is a pair of smooth complex quartic K3 surfaces such that they are Cemona equivalent but not projectively equivalent.
These two results are much inspired by e-mails from Professors Tuyen Truong and J\'anos Koll\'ar.
2016/04/11
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Piotr Pragacz (Institute of Mathematics, Polish Academy of Sciences )
Gysin maps, duality and Schubert classes (English)
https://www.impan.pl/~pragacz/main.htm
Piotr Pragacz (Institute of Mathematics, Polish Academy of Sciences )
Gysin maps, duality and Schubert classes (English)
[ Abstract ]
We establish a Gysin formula for Schubert bundles
and a strong version of the duality theorem in Schubert calculus
on Grassmann bundles. We then combine them to compute the fundamental
classes of Schubert bundles in Grassmann bundles, which yields a new
proof of the Giambelli formula for vector bundles. This is a joint
work with Lionel Darondeau.
[ Reference URL ]We establish a Gysin formula for Schubert bundles
and a strong version of the duality theorem in Schubert calculus
on Grassmann bundles. We then combine them to compute the fundamental
classes of Schubert bundles in Grassmann bundles, which yields a new
proof of the Giambelli formula for vector bundles. This is a joint
work with Lionel Darondeau.
https://www.impan.pl/~pragacz/main.htm
2015/12/17
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Dulip Piyaratne (IPMU)
Polarization and stability on a derived equivalent abelian variety (English)
http://db.ipmu.jp/member/personal/3989en.html
Dulip Piyaratne (IPMU)
Polarization and stability on a derived equivalent abelian variety (English)
[ Abstract ]
In this talk I will explain how one can define a polarization on a derived equivalent abelian variety by using Fourier-Mukai theory. Furthermore, we see how such a realisations is connected with stability conditions on their derived categories. Then I will discuss these ideas for abelian surfaces and abelian 3-folds in detail.
[ Reference URL ]In this talk I will explain how one can define a polarization on a derived equivalent abelian variety by using Fourier-Mukai theory. Furthermore, we see how such a realisations is connected with stability conditions on their derived categories. Then I will discuss these ideas for abelian surfaces and abelian 3-folds in detail.
http://db.ipmu.jp/member/personal/3989en.html
2015/12/14
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Atsushi Kanazawa (Harvard)
Extending Hori-Vafa toric mirror symmetry via SYZ and modular forms (English)
Atsushi Kanazawa (Harvard)
Extending Hori-Vafa toric mirror symmetry via SYZ and modular forms (English)
[ Abstract ]
In this talk, I will introduce partial compactification for a class of toric Calabi-Yau manifolds. A fundamental question is how the Hori-Vafa toric mirror symmetry extends to this new class of Calabi-Yau manifolds. The answer leads us to a new connection between SYZ mirror symmetry and modular forms. If time permits, I will also discuss higher dimensional analogues of the Yau-Zaslow formula (for an elliptic K3 surface) in terms of Siegel modular forms. This talk is based on a joint work with Siu-Cheong Lau.
In this talk, I will introduce partial compactification for a class of toric Calabi-Yau manifolds. A fundamental question is how the Hori-Vafa toric mirror symmetry extends to this new class of Calabi-Yau manifolds. The answer leads us to a new connection between SYZ mirror symmetry and modular forms. If time permits, I will also discuss higher dimensional analogues of the Yau-Zaslow formula (for an elliptic K3 surface) in terms of Siegel modular forms. This talk is based on a joint work with Siu-Cheong Lau.
2015/12/07
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Alexey Bondal (IPMU)
Flops and spherical functors (English)
Alexey Bondal (IPMU)
Flops and spherical functors (English)
[ Abstract ]
I will describe various functors on derived categories of coherent sheaves
related to flops and relations between these functors. A categorical
version of deformation theory of systems of objects in abelian categories
will be outlined and its relation to flop spherical functors will be
presented.
I will describe various functors on derived categories of coherent sheaves
related to flops and relations between these functors. A categorical
version of deformation theory of systems of objects in abelian categories
will be outlined and its relation to flop spherical functors will be
presented.
2015/11/30
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Fabrizio Catanese (Universität Bayreuth)
Interesting surfaces which are coverings of a rational surface branched over few lines (English)
Fabrizio Catanese (Universität Bayreuth)
Interesting surfaces which are coverings of a rational surface branched over few lines (English)
[ Abstract ]
Surfaces which are covers of the plane branched over 5 or 6 lines have provided answers to long standing questions, for instance the BCD surfaces for Fujita's question on semiampleness of VHS (Dettweiler-Cat); and examples of ball quotients (Hirzebruch), automorphisms acting trivially on integral cohomology (Cat-Gromadtzki), canonical maps with high degree or image-degree (Pardini, Bauer-Cat). I shall speak especially about the above Abelian coverings of the plane, the geometry of the del Pezzo surface of degree 5, the rigidity of BCD surfaces, and a criterion for a fibred surface to be a projective classifying space.
Surfaces which are covers of the plane branched over 5 or 6 lines have provided answers to long standing questions, for instance the BCD surfaces for Fujita's question on semiampleness of VHS (Dettweiler-Cat); and examples of ball quotients (Hirzebruch), automorphisms acting trivially on integral cohomology (Cat-Gromadtzki), canonical maps with high degree or image-degree (Pardini, Bauer-Cat). I shall speak especially about the above Abelian coverings of the plane, the geometry of the del Pezzo surface of degree 5, the rigidity of BCD surfaces, and a criterion for a fibred surface to be a projective classifying space.
2015/11/16
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Artan Sheshmani (IPMU/ Ohio State University)
Counting curves on surface in Calabi-Yau threefolds and the proof of S-duality modularity conjecture (English)
Artan Sheshmani (IPMU/ Ohio State University)
Counting curves on surface in Calabi-Yau threefolds and the proof of S-duality modularity conjecture (English)
[ Abstract ]
I will talk about recent joint works with Amin Gholampour, Richard Thomas and Yukinobu Toda, on an algebraic-geometric proof of the S-duality conjecture in superstring theory, made formerly by physicists Gaiotto, Strominger, Yin, regarding the modularity of DT invariants of sheaves supported on hyperplane sections of the quintic Calabi-Yau threefold. Our strategy is to first use degeneration and localization techniques to reduce the threefold theory to a certain intersection theory over the relative Hilbert scheme of points on surfaces and then prove modularity; More precisely, together with Gholampour we have proven that the generating series, associated to the top intersection numbers of the Hilbert scheme of points, relative to an effective divisor, on a smooth quasi-projective surface is a modular form. This is a generalization of the result of Okounkov-Carlsson, where they used representation theory and the machinery of vertex operators to prove this statement for absolute Hilbert schemes. These intersection numbers eventually, together with the generating series of Noether-Lefschetz numbers as I will explain, will provide the ingredients to achieve a complete algebraic-geometric proof of S-duality modularity conjecture.
I will talk about recent joint works with Amin Gholampour, Richard Thomas and Yukinobu Toda, on an algebraic-geometric proof of the S-duality conjecture in superstring theory, made formerly by physicists Gaiotto, Strominger, Yin, regarding the modularity of DT invariants of sheaves supported on hyperplane sections of the quintic Calabi-Yau threefold. Our strategy is to first use degeneration and localization techniques to reduce the threefold theory to a certain intersection theory over the relative Hilbert scheme of points on surfaces and then prove modularity; More precisely, together with Gholampour we have proven that the generating series, associated to the top intersection numbers of the Hilbert scheme of points, relative to an effective divisor, on a smooth quasi-projective surface is a modular form. This is a generalization of the result of Okounkov-Carlsson, where they used representation theory and the machinery of vertex operators to prove this statement for absolute Hilbert schemes. These intersection numbers eventually, together with the generating series of Noether-Lefschetz numbers as I will explain, will provide the ingredients to achieve a complete algebraic-geometric proof of S-duality modularity conjecture.
2015/11/09
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Yukari Ito (Nagoya University)
3-dimensional McKay correspondence (English)
Yukari Ito (Nagoya University)
3-dimensional McKay correspondence (English)
[ Abstract ]
The original McKay correspondence is a relation between group theory of a finite subgroup G of SL(2,C) and geometry of the minimal resolution of the quotient singularity by G, and was generalized several ways. In particular, 3-dimensional generalization was extended to derived categorical eqivalence and the G-Hilbert scheme was useful to explain the correspondence. However, most results hold only for abelian subgroups. In this talk, I would like to introduce an iterated G-Hilbert scheme and show more geometrical McKay correspondence for non-abelian subgroups.
The original McKay correspondence is a relation between group theory of a finite subgroup G of SL(2,C) and geometry of the minimal resolution of the quotient singularity by G, and was generalized several ways. In particular, 3-dimensional generalization was extended to derived categorical eqivalence and the G-Hilbert scheme was useful to explain the correspondence. However, most results hold only for abelian subgroups. In this talk, I would like to introduce an iterated G-Hilbert scheme and show more geometrical McKay correspondence for non-abelian subgroups.
2015/11/05
15:30-17:00 Room #126 (Graduate School of Math. Sci. Bldg.)
Shinnosuke Okawa (Osaka University)
Compact moduli of marked noncommutative del Pezzo surfaces via quivers (English)
Shinnosuke Okawa (Osaka University)
Compact moduli of marked noncommutative del Pezzo surfaces via quivers (English)
[ Abstract ]
I will introduce certain GIT construction via quivers of compactified moduli spaces of marked noncommutative del Pezzo surfaces. For projective plane, quadric surface, and those of degree 3, 2, 1, we obtain projective toric varieties of dimension 2, 3, 8, 9, 10, respectively. Then I will discuss relations with deformation theory of abelian categories, blow-up of noncommutative projective planes, and three-block exceptional collections due to Karpov and Nogin. This talk is based on joint works in progress with Tarig Abdelgadir and Kazushi Ueda.
I will introduce certain GIT construction via quivers of compactified moduli spaces of marked noncommutative del Pezzo surfaces. For projective plane, quadric surface, and those of degree 3, 2, 1, we obtain projective toric varieties of dimension 2, 3, 8, 9, 10, respectively. Then I will discuss relations with deformation theory of abelian categories, blow-up of noncommutative projective planes, and three-block exceptional collections due to Karpov and Nogin. This talk is based on joint works in progress with Tarig Abdelgadir and Kazushi Ueda.
2015/10/26
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Lawrence Ein (University of Illinois at Chicago)
Asymptotic syzygies and the gonality conjecture (English)
Lawrence Ein (University of Illinois at Chicago)
Asymptotic syzygies and the gonality conjecture (English)
[ Abstract ]
We'll discuss my joint work with Lazarsfeld on the gonality conjecture about the syzygies of a smooth projective curve when it is embedded into the projective space by the complete linear system of a sufficiently very ample line bundles. We'll also discuss some results about the asymptotic syzygies f higher dimensional varieties.
We'll discuss my joint work with Lazarsfeld on the gonality conjecture about the syzygies of a smooth projective curve when it is embedded into the projective space by the complete linear system of a sufficiently very ample line bundles. We'll also discuss some results about the asymptotic syzygies f higher dimensional varieties.