Algebraic Geometry Seminar
Seminar information archive ~05/09|Next seminar|Future seminars 05/10~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2017/05/30
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Masaru Nagaoka (The University of Tokyo)
Contractible affine threefolds in smooth Fano threefolds (English or Japanese)
Masaru Nagaoka (The University of Tokyo)
Contractible affine threefolds in smooth Fano threefolds (English or Japanese)
[ Abstract ]
By the contribution of M. Furushima, N. Nakayama, Th. Peternell and M.
Schneider, it is completed to classify all projective compactifications
of the affine $3$-space $\mathbb{A}^3$ with Picard number one.
As a similar question, T. Kishimoto raised the problem to classify all
triplets $(V, U, D_1 \cup D_2)$ which consist of smooth Fano threefolds
$V$ of Picard number two, contractible affine threefolds $U$ as open
subsets of $V$, and the complements $D_1 \cup D_2 =V \setminus U$.
He also solved this problem when the log canonical divisors $K_V+D_1+D_2
$ are not nef.
In this talk, I will discuss the triplets $(V, U, D_1 \cup D_2)$ whose
log canonical divisors are linearly equivalent to zero.
I will also explain how to determine all Fano threefolds $V$ which
appear in such triplets.
By the contribution of M. Furushima, N. Nakayama, Th. Peternell and M.
Schneider, it is completed to classify all projective compactifications
of the affine $3$-space $\mathbb{A}^3$ with Picard number one.
As a similar question, T. Kishimoto raised the problem to classify all
triplets $(V, U, D_1 \cup D_2)$ which consist of smooth Fano threefolds
$V$ of Picard number two, contractible affine threefolds $U$ as open
subsets of $V$, and the complements $D_1 \cup D_2 =V \setminus U$.
He also solved this problem when the log canonical divisors $K_V+D_1+D_2
$ are not nef.
In this talk, I will discuss the triplets $(V, U, D_1 \cup D_2)$ whose
log canonical divisors are linearly equivalent to zero.
I will also explain how to determine all Fano threefolds $V$ which
appear in such triplets.