Algebraic Geometry Seminar
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2016/07/05
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Dulip Piyaratne (IPMU)
Generalized Bogomolov-Gieseker type inequality for Fano 3-folds (English)
Dulip Piyaratne (IPMU)
Generalized Bogomolov-Gieseker type inequality for Fano 3-folds (English)
[ Abstract ]
Construction of Bridgeland stability conditions on a given smooth projective 3-fold is an important problem. A conjectural construction for any 3-fold was introduced by Bayer, Macri and Toda, and the problem is reduced to proving so-called Bogomolov-Gieseker type inequality holds for certain stable objects in the derived category. It has been shown to hold for Fano 3-folds of Picard rank one due to the works of Macri, Schmidt and Li. However, Schmidt gave a counter-example for a Fano 3-fold of higher Picard rank. In this talk, I will explain how to modify the original conjectural inequality for general Fano 3-folds and why it holds.
Construction of Bridgeland stability conditions on a given smooth projective 3-fold is an important problem. A conjectural construction for any 3-fold was introduced by Bayer, Macri and Toda, and the problem is reduced to proving so-called Bogomolov-Gieseker type inequality holds for certain stable objects in the derived category. It has been shown to hold for Fano 3-folds of Picard rank one due to the works of Macri, Schmidt and Li. However, Schmidt gave a counter-example for a Fano 3-fold of higher Picard rank. In this talk, I will explain how to modify the original conjectural inequality for general Fano 3-folds and why it holds.