Algebraic Geometry Seminar
Seminar information archive ~04/30|Next seminar|Future seminars 05/01~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2014/10/27
14:50-16:20 Room #122 (Graduate School of Math. Sci. Bldg.)
Meng Chen (Fudan University)
On projective varieties with very large canonical volume (ENGLISH)
Meng Chen (Fudan University)
On projective varieties with very large canonical volume (ENGLISH)
[ Abstract ]
For any positive integer n>0, a theorem of Hacon-McKernan, Takayama and Tsuji says that there is a constant c(n) so that the m-canonical map is birational onto its image for all smooth projective n-folds and all m>=c(n). We are interested in the following problem "P(n)": is there a constant M(n) so that, for all smooth projective n-fold X with Vol(X)>M(n), the m-canonical map of X is birational for all m>=c(n-1). The answer to “P_n" is positive due to Bombieri when $n=2$ and to Todorov when $n=3$. The aim of this talk is to introduce my joint work with Zhi Jiang from Universite Paris-Sud. We give a positive answer in dimensions 4 and 5.
For any positive integer n>0, a theorem of Hacon-McKernan, Takayama and Tsuji says that there is a constant c(n) so that the m-canonical map is birational onto its image for all smooth projective n-folds and all m>=c(n). We are interested in the following problem "P(n)": is there a constant M(n) so that, for all smooth projective n-fold X with Vol(X)>M(n), the m-canonical map of X is birational for all m>=c(n-1). The answer to “P_n" is positive due to Bombieri when $n=2$ and to Todorov when $n=3$. The aim of this talk is to introduce my joint work with Zhi Jiang from Universite Paris-Sud. We give a positive answer in dimensions 4 and 5.