Algebraic Geometry Seminar
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2013/11/25
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Takayuki Koike (The University of Tokyo)
Minimal singular metrics of some line bundles with infinitely generated section rings (JAPANESE)
Takayuki Koike (The University of Tokyo)
Minimal singular metrics of some line bundles with infinitely generated section rings (JAPANESE)
[ Abstract ]
We consider Hermitian metrics of pseudo-effective line bundles on smooth
projective varieties defined over $\\mathbb{C}$.
Especially we are interested in (possibly singular) Hermitian metrics
with semi-positive curvatures when the section rings are not finitely generated.
We study where and how minimal singular metrics, special Hermitian
metrics with semi-positive curvatures, diverges in the following two situations;
a line bundle admitting no Zariski decomposition even after any
modifications (Nakayama example)
and a nef line bundle $L$ on $X$ satisfying $D \\subset |mL|$ and $|mL-D|
= \\emptyset$ for some divisor $D \\subset X$ and for all $m \\geq 1$ (
Zariski example).
We consider Hermitian metrics of pseudo-effective line bundles on smooth
projective varieties defined over $\\mathbb{C}$.
Especially we are interested in (possibly singular) Hermitian metrics
with semi-positive curvatures when the section rings are not finitely generated.
We study where and how minimal singular metrics, special Hermitian
metrics with semi-positive curvatures, diverges in the following two situations;
a line bundle admitting no Zariski decomposition even after any
modifications (Nakayama example)
and a nef line bundle $L$ on $X$ satisfying $D \\subset |mL|$ and $|mL-D|
= \\emptyset$ for some divisor $D \\subset X$ and for all $m \\geq 1$ (
Zariski example).