Algebraic Geometry Seminar
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2010/01/18
16:40-18:10 Room #126 (Graduate School of Math. Sci. Bldg.)
Anne-Sophie Kaloghiros (RIMS)
The divisor class group of terminal Gorenstein Fano 3-folds and rationality questions
Anne-Sophie Kaloghiros (RIMS)
The divisor class group of terminal Gorenstein Fano 3-folds and rationality questions
[ Abstract ]
Let Y be a quartic hypersurface in CP^4 with mild singularities, e.g. no worse than ordinary double points.
If Y contains a surface that is not a hyperplane section, Y is not Q-factorial and the divisor class group of Y, Cl Y, contains divisors that are not Cartier. However, the rank of Cl Y is bounded.
In this talk, I will show that in most cases, it is possible to describe explicitly the divisor class group Cl Y by running a Minimal Model Program (MMP) on X, a small Q-factorialisation of Y. In this case, the generators of Cl Y/ Pic Y are ``topological traces " of K-negative extremal contractions on X.
This has surprising consequences: it is possible to conclude that a number of families of non-factorial quartic 3-folds are rational.
In particular, I give some examples of rational quartic hypersurfaces Y_4\\subset CP^4 with rk Cl Y=2 and show that when the divisor class group of Y has sufficiently high rank, Y is always rational.
Let Y be a quartic hypersurface in CP^4 with mild singularities, e.g. no worse than ordinary double points.
If Y contains a surface that is not a hyperplane section, Y is not Q-factorial and the divisor class group of Y, Cl Y, contains divisors that are not Cartier. However, the rank of Cl Y is bounded.
In this talk, I will show that in most cases, it is possible to describe explicitly the divisor class group Cl Y by running a Minimal Model Program (MMP) on X, a small Q-factorialisation of Y. In this case, the generators of Cl Y/ Pic Y are ``topological traces " of K-negative extremal contractions on X.
This has surprising consequences: it is possible to conclude that a number of families of non-factorial quartic 3-folds are rational.
In particular, I give some examples of rational quartic hypersurfaces Y_4\\subset CP^4 with rk Cl Y=2 and show that when the divisor class group of Y has sufficiently high rank, Y is always rational.