Tuesday Seminar on Topology
Seminar information archive ~12/07|Next seminar|Future seminars 12/08~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2024/12/17
17:00-18:30 Room #hybrid/056 (Graduate School of Math. Sci. Bldg.)
Pre-registration required. See our seminar webpage.
Emmanuel Graff (The University of Tokyo)
Is there torsion in the homotopy braid group? (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
Pre-registration required. See our seminar webpage.
Emmanuel Graff (The University of Tokyo)
Is there torsion in the homotopy braid group? (ENGLISH)
[ Abstract ]
In the 'Kourovka notebook,' V. Lin questions the existence of a non-trivial epimorphism from the braid group onto a non-abelian torsion-free group. The homotopy braid group, studied by Goldsmith in 1974, naturally appears as a potential candidate. In 2001, Humphries showed that this homotopy braid group is torsion-free for less than six strands. In this presentation, we will see a new approach based on the broader concept of welded braids, along with algebraic techniques, to determine whether the homotopy braid group provides a complete answer to Lin’s question.
[ Reference URL ]In the 'Kourovka notebook,' V. Lin questions the existence of a non-trivial epimorphism from the braid group onto a non-abelian torsion-free group. The homotopy braid group, studied by Goldsmith in 1974, naturally appears as a potential candidate. In 2001, Humphries showed that this homotopy braid group is torsion-free for less than six strands. In this presentation, we will see a new approach based on the broader concept of welded braids, along with algebraic techniques, to determine whether the homotopy braid group provides a complete answer to Lin’s question.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html