Tuesday Seminar on Topology
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2024/11/19
17:00-18:30 Room #hybrid/056 (Graduate School of Math. Sci. Bldg.)
Pre-registration required. See our seminar webpage.
Bruno Scárdua (Federal University of Rio de Janeiro)
On real center singularities of complex vector fields on surfaces (ENGLISH)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
Pre-registration required. See our seminar webpage.
Bruno Scárdua (Federal University of Rio de Janeiro)
On real center singularities of complex vector fields on surfaces (ENGLISH)
[ Abstract ]
One of the various versions of the classical Lyapunov-Poincaré center theorem states that a nondegenerate real analytic center type planar vector field singularity admits an analytic first integral. In a more proof of this result, R. Moussu establishes important connection between this result and the theory of singularities of holomorphic foliations ([2]). In this paper we consider generalizations for two main frameworks: (i) planar real analytic vector fields with "many" periodic orbits near the singularity and
(ii) germs of holomorphic foliations having a suitable singularity in dimension two.
In this talk we discuss some versions of Poincaré-Lyapunov center theorem, including for the case of holomorphic vector fields. We also give some applications, hinting that there is much more to be explored in this framework.
References
[1] V. León, B. Scárdua, On a Theorem of Lyapunov-Poincaré in Higher Dimensions, July 2021, Arnold Mathematical Journal 7(3) DOI:10.1007/s40598-021-00183-x.
[2] R. Moussu: Une démonstration géométrique d’un théorème de Lyapunov-Poincaré. Astérisque, tome 98-99 (1982), p. 216-223.
[3] A. Lyapunov: Etude d’un cas particulier du problème de la stabilité du mouvement. Mat. Sbornik 17 (1893) pages 252-333 (Russe).
[4] H. Poincaré: Mémoire sur les courbes définies par une équation différentielle (I), Journal de mathématiques pures et appliquées 3e série, tome 7 (1881), p. 375-422.
[5] Minoru Urabe and Yasutaka Sibuya; On Center of Higher Dimensions; Journal of Science of the Hiroshima University, Ser. A, . Vol. 19, No. I, July, 1955.
[ Reference URL ]One of the various versions of the classical Lyapunov-Poincaré center theorem states that a nondegenerate real analytic center type planar vector field singularity admits an analytic first integral. In a more proof of this result, R. Moussu establishes important connection between this result and the theory of singularities of holomorphic foliations ([2]). In this paper we consider generalizations for two main frameworks: (i) planar real analytic vector fields with "many" periodic orbits near the singularity and
(ii) germs of holomorphic foliations having a suitable singularity in dimension two.
In this talk we discuss some versions of Poincaré-Lyapunov center theorem, including for the case of holomorphic vector fields. We also give some applications, hinting that there is much more to be explored in this framework.
References
[1] V. León, B. Scárdua, On a Theorem of Lyapunov-Poincaré in Higher Dimensions, July 2021, Arnold Mathematical Journal 7(3) DOI:10.1007/s40598-021-00183-x.
[2] R. Moussu: Une démonstration géométrique d’un théorème de Lyapunov-Poincaré. Astérisque, tome 98-99 (1982), p. 216-223.
[3] A. Lyapunov: Etude d’un cas particulier du problème de la stabilité du mouvement. Mat. Sbornik 17 (1893) pages 252-333 (Russe).
[4] H. Poincaré: Mémoire sur les courbes définies par une équation différentielle (I), Journal de mathématiques pures et appliquées 3e série, tome 7 (1881), p. 375-422.
[5] Minoru Urabe and Yasutaka Sibuya; On Center of Higher Dimensions; Journal of Science of the Hiroshima University, Ser. A, . Vol. 19, No. I, July, 1955.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html